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Abstract 

Background:  For assembling large whole-genome sequence datasets for routine use in research and breeding, the 
sequencing strategy should be adapted to the methods that will be used later for variant discovery and imputation. 
In this study, we used simulation to explore the impact that the sequencing strategy and level of sequencing invest‑
ment have on the overall accuracy of imputation using hybrid peeling, a pedigree-based imputation method that is 
well suited for large livestock populations.

Methods:  We simulated marker array and whole-genome sequence data for 15 populations with simulated or real 
pedigrees that had different structures. In these populations, we evaluated the effect on imputation accuracy of 
seven methods for selecting which individuals to sequence, the generation of the pedigree to which the sequenced 
individuals belonged, the use of variable or uniform coverage, and the trade-off between the number of sequenced 
individuals and their sequencing coverage. For each population, we considered four levels of investment in sequenc‑
ing that were proportional to the size of the population.

Results:  Imputation accuracy depended greatly on pedigree depth. The distribution of the sequenced individuals 
across the generations of the pedigree underlay the performance of the different methods used to select individuals 
to sequence and it was critical for achieving high imputation accuracy in both early and late generations. Imputation 
accuracy was highest with a uniform coverage across the sequenced individuals of 2× rather than variable coverage. 
An investment equivalent to the cost of sequencing 2% of the population at 2× provided high imputation accuracy. 
The gain in imputation accuracy from additional investment decreased with larger populations and higher levels of 
investment. However, to achieve the same imputation accuracy, a proportionally greater investment must be used in 
the smaller populations compared to the larger ones.

Conclusions:  Suitable sequencing strategies for subsequent imputation with hybrid peeling involve sequenc‑
ing ~2% of the population at a uniform coverage 2×, distributed preferably across all generations of the pedigree, 
except for the few earliest generations that lack genotyped ancestors. Such sequencing strategies are beneficial for 
generating whole-genome sequence data in populations with deep pedigrees of closely related individuals.
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Background
The coupling of appropriate sequencing strategies and 
powerful imputation methods enables the generation 
of large datasets of individuals with sequence data 
at a low cost. In this paper, we assess the impact that 
the sequencing strategy and the level of investment in 
sequencing have on the imputation of whole-genome 
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sequence data for entire livestock populations with 
a pedigree-based imputation method that does not 
require haplotype reference panels, such as hybrid peel-
ing [1].

Sequence data has the potential to empower the identi-
fication of causal variants that underlie quantitative traits 
or diseases [2–5], enhance livestock breeding [6–8], and 
increase the precision and scope of population genetic 
studies [9, 10]. For sequence data to be used routinely 
in research and breeding, low-cost sequencing strate-
gies must be deployed in order to assemble large datasets 
that capture most of the genetic diversity in a population 
and enable harnessing of its potential. A range of low-
cost sequencing strategies have been proposed, which 
involve sequencing a subset of individuals and then per-
forming imputation of whole-genome sequence data for 
the remaining individuals. Possible sequencing strategies 
range from sequencing key ancestors in a population at 
high coverage [3, 7] to sequencing a large subset of the 
individuals in a population at low coverage [11–13].

For the implementation of these sequencing strate-
gies, several methods have been proposed to select the 
individuals to sequence and the coverage at which to 
sequence them in both human and livestock popula-
tions. Some methods are based on pedigree information 
only, while others are based on genomic information. 
The approaches used in these methods are diverse. The 
pedigree-based method developed by Boichard et al. [14] 
was originally intended for analysing pedigrees of large 
populations and it iteratively selects the ancestors that 
contribute the greatest pedigree-inferred marginal con-
tributions. Other pedigree-based methods proposed by 
Druet et al. [7] maximise either the genetic relationship 
between the sequenced individuals and the rest of the 
population or, on the contrary, the number of independ-
ent genomes captured. The methods based on genomic 
information typically use haplotype libraries derived 
from phased marker array genotypes [7, 15–19] or the 
genomic relationship matrix [20, 21].

Some of these methods have been designed to select 
sets of individuals for producing haplotype reference 
panels. Many imputation methods, such as the popula-
tion-based imputation algorithms that are traditionally 
used in human genetics, use these reference panels to 
find haplotypes that match those of the imputed individ-
uals [22–27]. In livestock, these reference panels are typi-
cally developed by sequencing key ancestors, which are 
expected to carry many of the high-frequency haplotypes 
in the population, at high coverage. However, alternative 
imputation methods exist that do not use reference pan-
els and it is unclear whether the methods that have been 
proposed to select the individuals to sequence are well 
suited for them.

Recently, we proposed the use of ‘hybrid peeling’ [1], 
a fast and accurate imputation method that is explic-
itly designed for jointly calling, phasing and imputing 
whole-genome sequence data in large and complex 
multi-generational pedigreed populations where indi-
viduals can be sequenced at variable coverage or not 
sequenced at all. Hybrid peeling is a two-step pro-
cess. In the first step, multi-locus iterative peeling is 
performed to estimate the segregation probabilities 
for a subset of segregating sites (e.g., the markers on 
a genotyping array). In the second step, the segrega-
tion probabilities are used to perform fast single-locus 
iterative peeling on every segregating site discovered 
in the genome. This two-step process allows the com-
putationally demanding multi-locus peeling step to be 
performed on only a subset of the variants, while still 
leveraging linkage information for the remaining vari-
ants. We have recently shown that hybrid peeling is a 
powerful method for imputing whole-genome sequence 
data from marker array data in large pedigreed live-
stock populations where only a small fraction of the 
individuals need to be sequenced, mostly at low cover-
age [28].

Our hypothesis is that the choice of sequencing 
strategy and method for selecting which individuals to 
sequence should be adapted to the methods that will be 
used later for variant discovery and for imputation. A 
body of work already exists for the design of reference 
panels for population-based imputation methods [7, 19, 
25, 29–31]. To our knowledge, a similar body of work is 
absent for pedigree-based imputation methods that do 
not require haplotype reference panels, such as hybrid 
peeling.

The objectives of this study were to assess the perfor-
mance of hybrid peeling based on: (i) the structure of 
the pedigree and the level of investment in sequencing; 
and (ii) the chosen sequencing strategy. For this pur-
pose, we simulated whole-genome sequence data under 
different sequencing strategies for a series of simulated 
and real pedigrees. We assessed the effect of six factors 
on the population-wide imputation accuracy of hybrid 
peeling: (i) pedigree structure and population size; (ii) 
level of investment in sequencing; (iii) the method for 
selecting individuals to sequence; (iv) the generation 
of the pedigree to which the sequenced individuals 
belonged; (v) the use of variable or uniform sequenc-
ing coverage; and (vi) the trade-off between the number 
of sequenced individuals and the sequencing coverage. 
We provide recommendations on sequencing strategies 
for population-wide studies.
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Methods
We simulated marker array genotype data and whole-
genome sequence data for 12 populations with simulated 
pedigrees and three populations with real pedigrees. 
For each population, we defined four different levels of 
investment in sequencing, proportional to population 
size and equivalent to sequencing between 0.5 and 5% of 
the individuals in a population at 2×. We structured the 
analysis of the data into four tests. In Test 1, we used dif-
ferent methods for selecting the individuals to sequence 
and the coverage at which they were sequenced in order 
to assess the suitability of these methods when imputa-
tion was performed with hybrid peeling. In Test 2, we 
focused all the sequencing on specific generations of the 
pedigree and assessed the effect that the generation to 
which the sequenced individuals belonged had on impu-
tation accuracy. In Test 3, we compared the imputation 
accuracy achieved by sequencing the same set of individ-
uals at either variable or uniform coverage. In Test 4, we 
sequenced different numbers of individuals at different 
levels of coverage and quantified the trade-off between 
the number of sequenced individuals and the coverage at 
which they are sequenced. In the following, we describe 
in detail how the data were generated and how the differ-
ent tests were performed.

Simulated data
Using AlphaSim [32], we simulated genotype data for 12 
populations with simulated pedigrees and three popula-
tions with real pedigrees to represent the different pedi-
gree structures that exist in livestock populations. For 
each population, we simulated marker array genotype 
data at two densities (high and low) based on genotyp-
ing schemes that are currently used in typical livestock 
breeding programs and we simulated whole-genome 
sequence data based on each sequencing strategy tested. 
For each scenario, we simulated two replicates and the 
results were averaged across replicates.

Populations with simulated pedigrees
Pedigrees were simulated to represent populations with 
different numbers of genotyped generations and different 
generation sizes. The simulated pedigrees consisted of 2, 
5, 10, or 15 discrete generations with 500, 1000, or 2000 
genotyped individuals per generation. In all cases, the 
populations were simulated after ten generations without 
selection, of which the first nine were excluded from the 
analyses due to their lack of genotype data, and only the 
sires and dams from the tenth generation that produced 
offspring were retained and formed the ‘base generation’ 
of the pedigrees used for imputation. Thus, the size of 
the simulated pedigrees used for imputation ranged from 
1000 to 30,000 individuals. In each generation, truncation 

selection on true breeding values was performed for a 
polygenic trait using selection proportions of 5% for sires 
and 25% for dams, with each selected parent contribut-
ing the same amount of progeny. The polygenic trait was 
simulated to have a heritability of 0.3 and was controlled 
by 20,000 variants, which were selected randomly from 
the genotype data simulated as described below and their 
effects were sampled from a normal distribution. Indi-
viduals who did not contribute progeny were not pruned. 
The pedigrees were sorted so that parents appeared 
before their progeny. A summary of the structure of the 
simulated pedigrees is in Table 1.

Genotype data was simulated for 20 chromosomes, 
each 100 cM long. For each chromosome, we generated 
1000 base haplotypes assuming a chromosome length 
of 108 base pairs, a per-site mutation rate of 2.5 × 10−8, 
a between-site recombination rate of 1 × 10−8, and an 
effective population size (Ne) that varied over time in 
accordance with estimates for a livestock population 
[33] using the Markovian Coalescent Simulator (MaCS) 
[34]. Then, we used AlphaSim [32] to drop the base hap-
lotypes through the simulated multi-generational pedi-
grees. In total, 150,000 single nucleotide polymorphisms 
(SNPs) per chromosome (3 million SNPs genome-wide) 
were retained in order to represent the whole-genome 
sequence. A subset of 3000 SNPs per chromosome 
(60,000 SNPs genome-wide) was used as a high-density 
marker array (HD). A smaller subset of 300 SNPs per 
chromosome (6000 SNPs genome-wide) nested within 
the high-density marker array was used as a low-density 
marker array (LD). Each individual was assigned HD or 
LD marker array data according to the following propor-
tions: in the base generation (parents of generation 1), 
75% individuals were genotyped, of which 67% and 33% 
were genotyped at high and low density, respectively; in 
the remaining generations, 95% of individuals were geno-
typed, of which 15% and 85% were genotyped at high and 
low density, respectively. The genotyped/non-genotyped 
status was assigned randomly but the marker array den-
sity was assigned prioritising HD for individuals that 
produced the most (grand)progeny, except in the final 
generation, where it was assigned randomly.

Populations with real pedigrees
In addition to the simulated pedigrees, three real live-
stock pedigrees from commercial pig breeding lines 
(Genus PIC, Hendersonville, TN) were used. The three 
real pedigrees were selected to represent different popu-
lation sizes: 15,187 (15k), 29,974 (30k), and 64,598 (65k) 
individuals. The pedigrees of each population were sorted 
so that parents appeared earlier than their progeny. Gen-
otype data were simulated following the same steps used 
for the simulated pedigrees, but the marker array density 
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at which each individual was genotyped was based on the 
density at which they were genotyped in reality. A sum-
mary of the structure of the real pedigrees is in Table 1.

Levels of investment and sequencing costs
For each of the populations, we tested four levels of 
investment in sequencing, proportional to the popula-
tion size. The levels of investment corresponded to the 
equivalent cost of sequencing 0.5, 1, 2, or 5% of the indi-
viduals in a population at 2× (sequencing an individual at 
2× was assumed to cost 200 monetary units, MU). Sce-
narios where total investment was less than 10,000 MU 
were ignored. The levels of investment are summarised in 
Table 1.

We assumed a library preparation cost of 40 MU and 
a linear sequencing cost between 1x and 5x of 80 MU 
per x. Thus, the combination of library preparation and 
sequencing at 1×, 2×, and 5× had a cost of 120 MU, 
200 MU, and 440 MU, respectively. We assumed that the 
combined cost scaled to 500 MU at 15× and 850 MU 
at 30× sequencing. These non-linear cost assumptions 
reflect non-linear costs that are prevalent in the current 
market.

We did not consider marker array genotyping costs 
and we assumed that, in current breeding programs with 
genomic selection, pre-existent marker array data can be 
used.

Allocation of sequencing resources
The individuals to be sequenced and their sequencing 
coverage were selected according to the design of each 

of the four tests and independently of whether they had 
marker array data. The number of sequenced individuals 
in each test scenario was determined by their sequencing 
coverage and the level of investment.

Test 1: method for selecting individuals to sequence 
and coverage
We tested the effect of different methods for selecting 
individuals to sequence and their sequencing coverage on 
the imputation accuracy when using hybrid peeling. We 
considered the following four methods:

•	 Top sires and dams (pedigree-based): We ranked 
the sires and dams based on their number of geno-
typed progeny and grandprogeny. We split sequenc-
ing resources equally between sequencing sires (50% 
of the investment) and dams (the other 50%) with 
more progeny, referred to as ‘top sires’ and ‘top dams’. 
Because in livestock dams contribute fewer progeny 
than sires, the top sires were sequenced at 2× and 
the top dams at 1×. We refer to this method as ‘Top-
SiresAndDams’.

•	 Key ancestors (pedigree-based): We identified key 
ancestors of a population using PEDIG [35]. PEDIG 
iteratively selects the set of individuals that contrib-
ute the greatest pedigree-inferred marginal contri-
butions. The selected individuals were sequenced 
at 15× to represent the sequencing strategy of key 
ancestors at high coverage. We refer to this method 
as ‘KeyAncestors’.

Table 1  Summary of the structure of the simulated and real pedigrees and levels of investment

Pedigree type Pedigree depth 
(generations)

Generation size 
(individuals)

Population size 
(total individuals)

Level of investment (monetary units)

0.5% at 2× 1% at 2× 2% at 2× 5% at 2×

Simulated 2 500 1000 – – – 10,000

2 1000 2000 – – – 20,000

2 2000 4000 – – 16,000 40,000

5 500 2500 – – 10,000 25,000

5 1000 5000 – 10,000 20,000 50,000

5 2000 10,000 10,000 20,000 40,000 100,000

10 500 5000 – 10,000 20,000 50,000

10 1000 10,000 10,000 20,000 40,000 100,000

10 2000 20,000 20,000 40,000 80,000 200,000

15 500 7500 – 15,000 30,000 75,000

15 1000 15,000 15,000 30,000 60,000 150,000

15 2000 30,000 30,000 60,000 120,000 300,000

Real ~ 20 ~ 750 ~ 15,000 15,000 30,000 60,000 150,000

~ 20 ~ 1500 ~ 30,000 30,000 60,000 120,000 300,000

~ 20 ~ 3250 ~ 65,000 65,000 130,000 260,000 650,000
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•	 Pedigree genetic relationship (pedigree-based): We 
selected individuals sequentially following the ‘REL’ 
method proposed by Druet et  al. [7]. This method 
maximises the genetic relationship between the 
sequenced individuals and the rest of the popula-
tion while accounting for the relationships among the 
sequenced individuals. We used a stepwise strategy 
to select, first, the individual with the highest average 
pedigree relationship with the rest of the population, 
and then, the individuals with the highest score cal-
culated as (A−1

s as)
t 1s , where As is the pedigree rela-

tionship matrix between the s sequenced individuals 
and as is the vector of average pedigree relationships 
between each sequenced individual s and the rest of 
individuals in the population. The selected individu-
als were sequenced at 15× to represent a sequencing 
strategy of key individuals at high coverage. We refer 
to this method as ‘PedGenRel’.

•	 AlphaSeqOpt (haplotype-based): We used the 
two-stage AlphaSeqOpt method. In the first stage, 
AlphaSeqOpt part 1 [17] was used to identify the 
individuals whose haplotypes represented a large 
proportion of the population haplotypes (referred 
to as ‘focal individuals’) and then variable levels of 
sequence coverage (i.e., not sequenced or sequenced 
at 1×, 2×, 5×, 15×, or 30×) were assigned to these 
focal individuals and their parents and grandparents 
so that the expected phasing accuracy of the haplo-
types that they carry was maximised. In the second 
stage, AlphaSeqOpt part 2 [18] was used to identify 
individuals that carried haplotypes whose cumu-
lative coverage was low at the end of the first stage 
(i.e., below a target cumulative coverage of 10×) and 
those individuals were sequenced at 1× so that the 
cumulative coverage on the haplotypes that they 
carried could be increased (i.e., at or above a target 
cumulative coverage of 10×). We split the sequenc-
ing resources equally between the first and the sec-
ond stage of AlphaSeqOpt. The number of fami-
lies of focal individuals targeted in the first stage of 
AlphaSeqOpt was determined by assuming an aver-
age cost of 1400 MU per family, which was equiva-
lent to sequencing all seven family members (i.e., the 
focal individual plus its two parents and four grand-
parents) at 2×. Note that this average cost per family 
was used only to determine the number of families 
targeted but that AlphaSeqOpt distributes the total 
resources differently across different families and dif-
ferent members within these families. AlphaSeqOpt 
uses phased genotype data when performing its opti-
misation. In this study, we used haplotype libraries 
built from the true simulated phased marker array 

genotypes of all 20 chromosomes. We refer to this 
method as ‘AlphaSeqOpt’.

In addition to these four methods, we also tested one 
combination of pedigree- and haplotype-based methods 
and two random methods as controls to separate the con-
tribution of informed methods to imputation accuracy, 
as follows:

•	 Combination of pedigree- and haplotype-based meth-
ods: We used a combination of the TopSiresAnd-
Dams and AlphaSeqOpt methods. To do this, we 
assumed that sequencing resources were split equally 
between each method. Thus, 25% of the investment 
was used for sequencing top sires at 2×, 25% for top 
dams at 1×, 25% for the focal individuals and their 
families at variable coverage (stage 1 of AlphaSe-
qOpt), and the remaining 25% for individuals car-
rying under-sequenced haplotypes at 1× (stage 2 of 
AlphaSeqOpt). This method was used as the base-
line scenario for comparisons because it mimics the 
method previously coupled with hybrid peeling [28]. 
We refer to this method as ‘Combined’.

•	 Random with variable coverage: We randomly 
selected individuals from the population to be 
sequenced, while maintaining the same distribution 
of coverage levels as in the Combined method, i.e., 
the same number of individuals were sequenced at 
1×, 2×, 5×, 15×, or 30×. We refer to this method as 
‘RandomVar’.

•	 Random at uniform coverage: We used a second ran-
dom method that selected individuals from the pop-
ulation and sequenced these individuals uniformly at 
2×. We refer to this method as ‘RandomUnif ’.

Test 2: generation to which the sequenced individuals belong
We tested the effect of the generation to which the 
sequenced individuals belonged on the imputation accu-
racy of hybrid peeling. To do this, we created five sce-
narios per population and level of investment. In each 
scenario involving populations with real pedigrees, we 
selected the individuals to sequence randomly but with 
the constraint that they could only come from a given 
decile, i.e., individuals were selected from the 0–0.1, 
0.2–0.3, 0.4–0.5, 0.6–0.7, or 0.8–0.9 relative positions of 
the pedigree. The relative position of an individual within 
a pedigree was defined as its ordinal position after sort-
ing by date of birth. The relative position in the pedi-
gree was used as a proxy for the generation to which an 
individual belonged in real pedigrees with overlapping 
generations, where the relative positions closer to 0 rep-
resented the individuals from the earliest generations. In 
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populations with simulated pedigrees, the same proce-
dure was followed but all the sequenced individuals were 
concentrated into given generations rather than deciles. 
In this test, all selected individuals were sequenced at 
2×. We complemented this test by examining the relative 
position in the pedigree of the individuals selected for 
sequencing using the methods from Test 1 and the cor-
responding imputation accuracy across the population.

Test 3: variable or uniform coverage
We compared the use of variable or uniform coverage. To 
do this, for each level of investment, we took the same 
individuals that were selected for sequencing at vari-
able coverage with the Combined method in Test 1, and 
assigned them a uniform coverage. First, we assigned the 
average coverage generated with the Combined method 
in Test 1 to every individual. However, sequencing every 
individual at the average coverage required a greater total 
investment than the scenario with variable coverage, 
because the individuals at higher coverage have propor-
tionally lower cost per x of sequencing. Then, to account 
for this, we also assigned a lower uniform coverage to 
every individual so that the investment required would 
equal the investment of the Combined method with vari-
able coverage.

Test 4: number of individuals and sequencing coverage
We tested the effect of the trade-off between the num-
ber of sequenced individuals and the coverage at which 
they were sequenced on the imputation accuracy of 
hybrid peeling to assess whether it was more beneficial 
to sequence fewer individuals at a higher coverage or 
more individuals at a lower coverage. To do this, we cre-
ated seven scenarios per population and level of invest-
ment. In each scenario, sequenced individuals were 
selected randomly and all the selected individuals were 
sequenced at either 0.25×, 0.5×, 1×, 2×, 3×, 4×, or 5×. 
We sequenced as many individuals as the level of invest-
ment would allow given the costs of library preparation 
and sequencing.

Generation of whole‑genome sequence data
After selecting individuals to sequence and sequencing 
coverage, we simulated read counts for each individual 
and locus from a Poisson-gamma distribution to account 
for the variability due to sequence ability of each locus 
and number of reads for each individual at each locus 
[36]:

1.	 Sequenceability of each marker locus ( sj ) was sam-
pled from a Gamma distribution with shape and rate 
parameter equal to 4, sj ∼ Gamma(a = 4, b = 4).

2.	 For a sequencing coverage of x , the number of 
sequence reads for an individual i at a locus j ( ni,j ) 
was sampled from a Poisson distribution with mean 
equal to xsj , ni,j ∼ Poisson(l = xsj).

3.	 The sequence reads were distributed at ran-
dom between the two alleles of an individ-
ual, ni,j,1 ∼ binomial

(

p = 0.5, k = ni,j
)

 and 
ni,j,2 = ni,j − ni,j,1.

Hybrid peeling imputation
We performed imputation using hybrid peeling, as 
implemented in AlphaPeel [1], with the default set-
tings. Hybrid peeling extends the methods of Kerr and 
Kinghorn [37] for single-locus iterative peeling and of 
Meuwissen and Goddard [38] for multi-locus itera-
tive peeling to efficiently call, phase and impute whole-
genome sequence data in complex multi-generational 
pedigrees. We performed multi-locus iterative peeling 
on all available marker array data to estimate the segrega-
tion probabilities for each individual. We did not impute 
the individuals genotyped with LD marker arrays to HD 
prior to this step. We used the segregation probabilities 
to perform segregation-aware single-locus iterative peel-
ing for the variant sites genome-wide.

To reduce computational demands, we performed 
single-locus peeling on a random subset of 5000 non-
consecutive SNPs taken from across three chromosomes. 
While we simulated 20 chromosomes to represent real-
istic haplotype diversity for the haplotype-based method 
AlphaSeqOpt, preliminary analyses revealed negligible 
variation of imputation accuracy across chromosomes 
and we limited the estimation of imputation accuracy to 
three chromosomes to reduce the computational require-
ments of this study.

Imputation accuracy
We calculated population-wide imputation accuracy by 
averaging the dosage correlations between true geno-
types and imputed dosages across all individuals of the 
population. The dosage correlations were calculated after 
correcting for minor allele frequency (MAF), as recom-
mended by Calus et al. [39]. To facilitate comparison with 
other studies that report the uncorrected (raw) allele dos-
age correlations, in the context of this study, we found 
that MAF-corrected correlations of 0.75, 0.80, 0.85, 0.90, 
and 0.95 were respectively equivalent to the raw correla-
tions of 0.89, 0.91, 0.93, 0.96, and 0.98.

Results
Imputation accuracy depended on pedigree structure 
and level of investment in sequencing, but it was robust 
to sequencing strategy as long as there was a sufficient 
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amount of sequence data widely distributed across the 
generations of a pedigree. In terms of pedigree structure, 
we found that pedigree depth (number of generations) 
greatly determined the accuracy of imputation. The gains 
in imputation accuracy from additional investment in 
sequencing diminished as population size and level of 
investment in sequencing increased. The performance of 
the different methods used for selecting which individu-
als to sequence depended mostly on to which generation 
the sequenced individuals belonged, with wider distribu-
tions across generations providing more persistent impu-
tation accuracy across the population. There was no clear 
benefit to sequencing the selected individuals at variable 
coverage. Instead, a uniform coverage of 2× was suffi-
cient to achieve high imputation accuracy.

Pedigree structure, population size and level of investment
Imputation accuracy greatly increased with pedigree 
depth (number of generations) but the generation size 
(number of individuals per generation) had only a small 
effect on imputation accuracy. Figure 1 shows the impu-
tation accuracy achieved for the populations with differ-
ent pedigree structures, population sizes, and levels of 
investment. The results for the populations with simu-
lated pedigrees are plotted against pedigree depth and 
generation size of each pedigree, whereas the results for 
the populations with real pedigrees are plotted against 
the total number of individuals in the population because 
they had overlapping generations.

Pedigree structure and population size
Populations with very shallow pedigrees had much 
lower levels of imputation accuracy compared to pop-
ulations with deep pedigrees, regardless of the gen-
eration size. For example, for the maximum level of 
investment considered (i.e., equivalent to 5% of the 

population sequenced at 2×), the imputation accuracy 
averaged across the three populations with simulated 
pedigrees was 0.48 (SD 0.04) for 2-generation pedi-
grees, 0.80 (SD 0.01) for 5-generation pedigrees, 0.89 
(SD 0.01) for 10-generation pedigrees, and 0.93 (SD 
0.01) for 15-generation pedigrees (Fig. 1a). In contrast, 
quadrupling population size by increasing the genera-
tion size from 500 to 2000 individuals per generation 
only increased imputation accuracy from 0.44 to 0.52 
in the 2-generation pedigrees, from 0.78 to 0.81 in the 
5-generation pedigrees, and from 0.92 to 0.93 in the 
15-generation pedigrees, while it did not change in the 
10-generation pedigrees.

The size of the populations with simulated pedigrees 
ranged from 1000 to 30,000 individuals. In the popula-
tions with simulated pedigrees, population size affected 
the accuracy of imputation accuracy to the extent that 
deeper pedigrees were larger. The populations with real 
pedigrees were larger than most of the simulated pedi-
grees, with 15,187 to 64,598 individuals, and encom-
passed ~20 overlapping generations. The imputation 
accuracy achieved for the populations with real pedi-
grees was higher than those of populations with simu-
lated pedigrees of a similar size (Fig. 1b).

Level of investment
The level of investment in sequencing also had a strong 
impact on imputation accuracy, particularly for the 
smallest populations and for the lowest levels of invest-
ment. There were diminishing returns for large popula-
tions and large levels of investment, probably because 
high imputation accuracy was already achieved in 
these scenarios and differences became less notice-
able. To achieve the same imputation accuracy, popula-
tions with shallow pedigrees required a proportionally 
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greater sequencing effort than populations with deep 
pedigrees. For example, to achieve imputation accuracy 
of 0.80, 5% of the individuals from the 5-generation 
populations needed to be sequenced but only 2% from 
the 10-generation populations or 1% from the 15-gen-
erations populations.

Imputation accuracy across generations
Imputation accuracy differed across generations of the 
pedigree. Imputation accuracy was low in the first gen-
erations and then increased in subsequent generations 
until it stabilised. Figure 2 shows the average imputation 
accuracy achieved for the individuals in each generation 
of the simulated pedigrees. With the maximum level of 
investment in sequencing (Fig. 2a, b, d), imputation accu-
racy seemed to plateau at generation 4. At lower levels of 
investment in sequencing, imputation accuracy increased 
more slowly and did not plateau until a later genera-
tion. These patterns were independent of generation 
size, but imputation accuracy by generation was always 
greater in populations with deep pedigrees than with 

shallow pedigrees. A similar pattern was observed in the 
real pedigrees (results not shown), where we observed 
reduced imputation accuracy for the individuals in the 
first generations.

The lower imputation accuracy in the first generations 
can be explained by insufficient information from imme-
diate ancestors to accurately estimate the segregation 
probabilities on which hybrid peeling relies [1, 28] (i.e., 
their parents and grandparents were unknown or did not 
have any marker array data). In light of these results, the 
populations with simulated pedigrees with two or five 
generations were not considered further. Imputation 
accuracy of the populations with simulated pedigrees in 
the remaining tests was assessed using only individuals 
from generation 4 onwards, and imputation accuracy of 
populations with real pedigrees was assessed after dis-
carding the first 20% individuals of the pedigree.

0.00

0.50

0.75

0.90

1.00

0 1 2 3 4 5 10 15
Generation

Im
pu

ta
tio

n 
ac

cu
ra

cy

Pedigree depth
15
10
5
2

a 500 individuals per generation
    Level of investment: 5%

0.00

0.50

0.75

0.90

1.00

0 1 2 3 4 5 10 15
Generation

Im
pu

ta
tio

n 
ac

cu
ra

cy

Pedigree depth
15
10
5

c 2000 individuals per generation
    Level of investment: 0.5%

0.00

0.50

0.75

0.90

1.00

0 1 2 3 4 5 10 15
Generation

Im
pu

ta
tio

n 
ac

cu
ra

cy

Pedigree depth
15
10
5
2

b 1000 individuals per generation
    Level of investment: 5%

0.00

0.50

0.75

0.90

1.00

0 1 2 3 4 5 10 15
Generation

Im
pu

ta
tio

n 
ac

cu
ra

cy

Pedigree depth
15
10
5
2

d 2000 individuals per generation
    Level of investment: 5%

Fig. 2  Imputation accuracy by generation for different simulated pedigrees and levels of investment. The sequenced individuals and their coverage 
were selected using the Combined method



Page 9 of 19Ros‑Freixedes et al. Genet Sel Evol           (2020) 52:18 	

Imputation accuracy in populations with overlapping 
generations
Imputation accuracy of the populations with real pedi-
grees after discarding the first 20% individuals (Fig.  1b) 
ranged from 0.98 to 0.99 with the maximum level of 
investment considered (i.e., equivalent to 5% of the pop-
ulation sequenced at 2×), and displayed no observable 
trend for population size. The imputation accuracy with 
the minimum level of investment (i.e., equivalent to 0.5% 
of the population sequenced at 2×) was already high for 
the populations with 30k and 65k individuals (0.91) but 
lower for the population with 15k individuals (0.83). As 
level of investment increased, the difference between the 
15k population and the two larger ones decreased from 
0.08 (with a level of investment of 0.5%) to 0.06 (with 
level of investment of 1%), 0.03 (with a level of invest-
ment of 2%) and only 0.01 (with a level of investment of 
5%). There were no noticeable differences in imputation 
accuracy between the populations with 30k and 65k indi-
viduals, and both achieved imputation accuracy over 0.98 
with levels of investment of 2% or more.

Test 1: method for selecting sequenced individuals 
and coverage
Imputation accuracy was consistently high for many of 
the methods tested, although the ranking of the best per-
forming methods depended on the level of investment. In 
general, all methods except for KeyAncestors performed 
similarly well, but their ranking differed depending on 
level of investment and type of pedigree. Figure 3 shows 
the imputation accuracy achieved with each method. To 
simplify, we only show results from the populations with 
real pedigrees and the simulated pedigrees with 10 or 15 
generations and 2000 individuals per generation and for 
the two most extreme levels of investment (i.e., equiva-
lent to 0.5% or 5% of the population sequenced at 2×).

At high levels of investment, the methods Combined, 
TopSiresAndDams, AlphaSeqOpt, PedGenRel, Random-
Var, and RandomUnif generally gave similar high imputa-
tion accuracy, of 0.97 to 0.99, for the populations with real 
pedigrees. At low levels of investment, either PedGenRel 
or the random methods RandomVar and RandomU-
nif generally performed better for the populations with 
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real pedigrees than Combined, TopSiresAndDams, and 
AlphaSeqOpt, with differences being more noticeable in 
small populations. For the populations with simulated 
pedigrees, TopSiresAndDams was the best performing 
method, although there was more variability in the rank-
ing of the methods than for the populations with real 
pedigrees. In the populations with simulated pedigrees, 
the PedGenRel method performed similarly to TopSire-
sAndDams when the level of investment was low but its 
performance dropped when the level of investment was 
high. In some of the populations with simulated pedi-
grees, AlphaSeqOpt produced much lower imputation 
accuracy than the best performing methods, although 
this was not observed in the populations with real pedi-
grees. The KeyAncestors method performed consistently 
worse than all other methods.

Test 2: generation to which sequenced individuals belong
Imputation accuracy in each generation of the pedigree 
depended on the generation the sequenced individuals 

belonged to. Figure 4 shows the position of the sequenced 
individuals within the pedigree, their sequencing cover-
age, and the imputation accuracy obtained for the indi-
viduals along the pedigree for the methods included in 
Test 1. Because results were similar for all populations 
and levels of investment, we only plotted results of the 
population with a real pedigree with 30 k individuals and 
a level of investment equivalent to 2% of the population 
sequenced at 2×.

The KeyAncestors method selected only individu-
als from the first generations and imputation accuracy 
across all generations was low. The PedGenRel method 
also selected individuals from the first generations but 
the sequenced individuals spanned a wider portion of the 
generations in the pedigree. Thus, for PedGenRel imputa-
tion accuracy rapidly increased from very low for the first 
generations to over 0.95 for the generations that were 
immediately posterior to the bulk of sequenced individu-
als and then it continued to increase slowly in subsequent 
generations. For the rest of methods, we found the same 

Fig. 4  Imputation accuracy obtained along the pedigree with different methods for selecting individuals to sequence and sequencing coverage. 
Results are for a population with a real pedigree with 30k individuals with investment equivalent to 2% of the population sequenced at 2×. The 
vertical red lines represent the position of the sequenced individuals and their length represents sequencing coverage (1, 2, 5, 15, or 30×). The grey 
dots represent the imputation accuracy obtained for each individual. The black line is the moving average. The profile obtained for RandomUnif was 
very similar to that with the RandomVar method, but with more individuals all at 2x
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pattern of the imputation accuracy along the genera-
tions of the pedigree, with slight differences in imputa-
tion accuracy in early or late generations depending on 
the position of the sequenced individuals. The individuals 
selected for sequencing by the Combined and TopSire-
sAndDams methods were more widely distributed across 
the generations but with a greater concentration in early 
generations. The TopSiresAndDams method had less 
dispersion of individual-wise imputation accuracy than 
other methods such as AlphaSeqOpt and PedGenRel. 
The distribution of the sequenced individuals across the 
generations selected with the AlphaSeqOpt method did 
not differ much from that of the Combined method but 
it had a larger number of individuals sequenced at high 
coverage, most of which were from early generations. 
Imputation accuracy with the AlphaSeqOpt method 
was lower than with the Combined method across all 
generations of the pedigree. With the RandomVar and 
RandomUnif (not shown) methods, the sequenced indi-
viduals were more evenly distributed across the genera-
tions of the pedigree and imputation accuracy followed a 
similar pattern to the Combined and TopSiresAndDams 
methods but with lower imputation accuracy in the first 
generations.

The generation of the pedigree to which the 
sequenced individuals belonged greatly determined 
the imputation accuracy in the remaining generations. 
That effect was more easily characterized when all the 
sequenced individuals were concentrated in a single 
decile or generation of the pedigree. Figure 5 shows the 
imputation accuracy obtained along the pedigree when 
the sequenced individuals belonged to a single decile of 
the real pedigrees. Figure 6 shows the imputation accu-
racy obtained along the pedigree when the sequenced 
individuals belonged to a single generation of the simu-
lated pedigrees.

Sequencing the individuals from the first decile 
resulted in very poor imputation accuracy across the 
population. However, sequencing in any of the deciles 
from the third decile onwards provided high imputation 
accuracy in that decile and the imputation accuracy 
largely persisted in the subsequent deciles. Theoreti-
cally, some decay of imputation accuracy should be 
expected as the imputed individuals from the subse-
quent deciles became more distant from the sequenced 
individuals but, in our test, this decay was mostly neg-
ligible in the populations with real pedigrees. However, 
decay was observed in the population with simulated 
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pedigrees (Fig.  6). In contrast, imputation accuracy in 
deciles before that to which the sequenced individuals 
belonged had a more pronounced decay as the imputed 
individuals became more distant from the sequenced 
individuals, until imputation accuracy decayed drasti-
cally for the first deciles in the pedigree. We observed 
the same pattern in the populations with simulated 
pedigrees.

Test 3: variable or uniform sequencing coverage
There was no clear benefit to using variable, as opposed 
to uniform, levels of sequencing coverage. Figure  7 
shows the imputation accuracy achieved when the same 
individuals selected with the Combined method were 
sequenced at variable coverage or at a uniform coverage. 
Table 2 compares the number of individuals sequenced, 
sequencing coverage, and investment required with the 
Combined method with variable coverage or with uni-
form coverage across the same sequenced individuals.

For the same amount of total coverage, it was more 
beneficial to distribute the sequencing resources uni-
formly across the same set of sequenced individuals. At 
the same amount of total coverage, imputation accu-
racy when sequencing at uniform coverage was gener-
ally greater than with variable coverage, by between 0.02 

and 0.07 when the level of investment was 0.5% but by 
only up to 0.01 when the level of investment was 5%. 
However, sequencing the same amount of total coverage 
using uniform coverage across the same set of sequenced 
individuals would incur in a 40% greater sequencing cost 
due to the assumed non-linear cost structure. Therefore, 
we considered an additional scenario of uniform cover-
age where investment equalled the investment of the 
scenario of variable coverage. At equal investment, the 
realized total coverage decreased by 35% when the indi-
viduals were sequenced at uniform coverage compared 
to the scenario of variable coverage. Imputation accu-
racy in the scenario of variable coverage at equal invest-
ment increased by up to 0.02 compared to the scenario 
of variable coverage when the level of investment was 
0.5%, although it did not change noticeably when the 
level of investment was 5%. At equal investment, if all 
the selected individuals were sequenced at 2×, on aver-
age 15% fewer individuals could be sequenced compared 
to the scenario with variable coverage, due mostly to the 
cost associated with library preparation.

Test 4: number of individuals and sequencing coverage
When all the individuals were sequenced at a uniform 
coverage, the sequencing coverage that produced the 
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highest imputation accuracy was around 2×, especially at 
low levels of investment. Figure 8 shows the imputation 
accuracy achieved for the populations with real pedigrees 
with different levels of investment when all the individu-
als were sequenced at different levels of coverage. In all 
three populations, there was a small reduction in impu-
tation accuracy when coverage was 1× or less. That 
reduction was on average 0.03 (max: 0.08) with a level 
of investment of 0.5% and only up to 0.01 with a level of 
investment of 5%. Similarly, there was a less pronounced 
reduction of imputation accuracy when sequencing 
coverage increased. This reduction was on average 0.01 
(max: 0.03) when the level of investment was 0.5%, but 
negligible at the highest levels of investment.

Discussion
The choice of sequencing strategy and method for select-
ing individuals to sequence should be tailored to the 
properties of the methods that will subsequently be used 
for variant discovery and for imputation. We performed 
a series of simulations to assess how the sequencing 

strategy can affect the imputation accuracy of hybrid 
peeling for a set of populations with simulated and real 
pedigrees with different pedigree structures and popula-
tion sizes. The results show that: (i) imputation accuracy 
depends largely on pedigree depth; (ii) hybrid peeling is 
robust to the method used for selecting which individuals 
to sequence and at which coverage, as long as the num-
ber of individuals sequenced is large and the sequenced 
individuals are distributed widely across all generations 
in the pedigree; and (iii) a sequencing coverage of 2× for 
all the sequenced individuals is sufficient to achieve high 
imputation accuracy when the number of sequenced 
individuals is large.

In the following sections, we will discuss: (i) the impact 
of pedigree structure; (ii) the impact of population size 
and level of investment; (iii) the impact of the selection of 
individuals to sequence; (iv) the impact of the sequencing 
coverage; (v) the recommendations for sequencing strate-
gies suited for pedigreed populations when using whole-
population imputation with hybrid peeling; and (vi) the 
limitations of the study.
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Impact of pedigree structure
Pedigree structure determined overall imputation accu-
racy. Pedigree depth was the factor with the greatest 
effect on imputation accuracy, whereas generation size 
did not have a noticeable effect. This occurred because, 
during peeling, information is transmitted ‘vertically’ 
across generations (from parents to progeny and vice 
versa) and transmitted ‘horizontally’ to contemporary 
individuals, only if they are connected via a relative in 
another generation (e.g., a common ancestor). In prac-
tice, real livestock pedigrees have overlapping, rather 
than discrete, generations with many closely related 
individuals, which typically leads to high imputation 
accuracy.

Impact of population size and level of investment
Gains in imputation accuracy from additional invest-
ment in sequencing resources diminished as population 
size and levels of investment increased. This occurred 
because the high genetic relationship between individuals 
in livestock populations favours the diffusion of informa-
tion from the sequenced individuals to distant relatives, 
to the point that information from additional sequenced 
individuals is increasingly redundant. For livestock popu-
lations with a size of similar order of magnitude as the 
real pedigrees that we tested, our results suggest that 
the minimum amount of sequence data required for 
high imputation accuracy should be the equivalent of 
sequencing ~2% of the individuals in a population at 2×. 
However, smaller populations require proportionally 
greater investment to achieve the same imputation accu-
racy as larger populations.

Impact of the selection of individuals to sequence
Impact of the generation to which the sequenced individuals 
belong
One of the main factors that determined imputation 
accuracy across the population was the generation of the 
pedigree to which the sequenced individuals belonged. 
We observed two distinct trends.

•	 Sequencing allocated to individuals from the first two 
generations or that do not have genotype data for at 
least a couple of generations of ancestors: Sequenc-
ing such individuals, even at high coverage, failed to 
produce good imputation accuracy for the rest of the 
population. This may seem counterintuitive at first, 
but is explained by the fact that the accuracy of the 
segregation probabilities for these individuals, which 
are used in hybrid peeling, was low due to insuffi-
cient information from their immediate ancestors 
(i.e., their parents and grandparents were unknown 
or did not have any marker array data) [1, 28]. The 
poor accuracy of their segregation probabilities hin-
dered the transmission of information between the 
first generation and the subsequent ones.

•	 Sequencing allocated to individuals that have geno-
type data for at least a couple of generations of 
ancestors: Sequencing such individuals produced 
high imputation accuracy for the rest of the popu-
lation. However, in these situations, there was a 
decay in imputation accuracy as the pedigree dis-
tance between the sequenced individuals and those 
to be imputed increased. This decay was more pro-
nounced when individuals in earlier generations were 
imputed from sequenced individuals in later genera-
tions than vice versa, because descendants are gen-
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Fig. 8  Imputation accuracy in real pedigrees when as many individuals as affordable were sequenced at different levels of coverage and levels of 
investment. The sequenced individuals were selected randomly
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erally less informative for imputation than ancestors 
due to Mendelian sampling. It was of note that in the 
populations with real pedigrees, we did not observe 
a decay when individuals in later generations were 
imputed from sequenced individuals in earlier gen-
erations, probably because the high genetic relation-
ship between the individuals in the real pedigrees 
enhanced the persistence of the imputation accuracy.

Performance of the methods for selecting individuals 
to sequence
Because of the impact of the generation to which the 
sequenced individuals belonged, the distribution of the 
sequenced individuals across the pedigree determined 
the performance of the methods for selecting which indi-
viduals to sequence:

•	 The TopSiresAndDams method: Targeting the sires 
and dams that contributed more progeny and grand-
progeny to the population was the most effective 
strategy at the level of investment that we recom-
mend (i.e., equivalent to sequencing at least ~2% of 
the population at 2×). The information from these 
sires and dams was directly transmitted to a large 
number of descendants that were widely distributed 
across the generations of a pedigree. The TopSire-
sAndDams method also favoured the imputation 
accuracy of the sires and dams in the early genera-
tions of the pedigree that are otherwise more difficult 
to impute from their descendants.

•	 The PedGenRel method: The PedGenRel method was 
more effective than the TopSiresAndDams method 
with low levels of investment but not with high levels 
of investment. The rationale for using the PedGen-
Rel method was to maximise the genetic relationship 
between the sequenced and imputed individuals to 
maximize the diffusion of information. Sequencing 
the individuals selected with this method at high cov-
erage was effective when the level of investment was 
insufficient for sequencing enough individuals at low 
coverage for hybrid peeling to probabilistically com-
bine their data. Nonetheless, with a sufficient level 
of investment, sequencing more individuals at low 
coverage with the TopSiresAndDams method pro-
vided higher imputation accuracy with less disper-
sion of individual-wise imputation accuracy than the 
PedGenRel method.

•	 Other methods: The performance of other methods, 
such as AlphaSeqOpt, depended on how they dis-
tributed sequencing across the generations of a pedi-
gree. In contrast to our results for hybrid peeling, for 
population-based imputation methods other stud-

ies have recommended haplotype-based methods to 
select the individuals of the reference panels [7, 19]. 
We hypothesize that the distribution of sequencing 
across the generations of a pedigree will also affect 
the performance of such methods if applied to hybrid 
peeling.

Impact of the sequencing coverage
Uniform low coverage at 2× provided the highest impu-
tation accuracy. The rationale for assigning variable 
coverage to the sequenced individuals within a popu-
lation was to ensure that some families had enough 
resolution to be able to accurately phase the common 
haplotypes that they carry [17], so that the phased hap-
lotypes could later be used to impute individuals that 
shared the same haplotypes [18]. However, there was 
no obvious benefit of sequencing individuals at vari-
able coverage because hybrid peeling is able to proba-
bilistically combine low-coverage genotype data across 
distant relatives, and therefore explicitly calling and 
phasing specific individuals in the population is not 
needed.

In addition, sequencing everybody at a low uniform 
coverage allows the sequencing of a larger number of 
individuals. Increasing the number of sequenced individ-
uals results in higher imputation accuracy because this 
strategy generates data in more individuals from which 
information can propagate to their relatives. This obser-
vation was consistent with empirical observations on real 
data which showed that the number of individuals with 
sequence data, rather than the cumulative sequencing 
coverage, determined imputation accuracy at each vari-
ant site [28]. However, when coverage is too low, imputa-
tion accuracy falls because many sites are not sufficiently 
covered with sequence reads to be informative for hete-
rozygote genotypes. Thus, the optimal coverage that pro-
duced the greatest imputation accuracy was 2×. These 
results are consistent with results from previous stud-
ies on reference panels for population-based imputation 
methods. VanRaden et al. [25] showed that, for the same 
total amount of coverage, reference panels with individu-
als sequenced at a coverage of 2 to 4× provided the great-
est imputation accuracy when using findhap4.

Recommendations for sequencing strategies for pedigreed 
populations
Based on our results, we recommend the following 
sequencing strategy for pedigreed livestock populations 
when using hybrid peeling for imputation:
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	 i.	 Maximise the number of sequenced individuals 
while avoiding sequencing individuals below 2×. 
There was no clear benefit of sequencing individu-
als at a higher coverage if the number of sequenced 
individuals was large. Coverage below 2x is not 
informative enough for heterozygote loci [40].

	 ii.	 Target for sequencing the sires and dams that con-
tributed more progeny and grandprogeny to the 
population. This is a simple but effective strategy 
in livestock pedigrees, where most individuals are 
direct descendants of a relatively small number of 
sires and dams. This method selects individuals 
that are widely distributed across all generations of 
the pedigree. This distribution of sequenced indi-
viduals improves the persistence of imputation 
accuracy both for early and late generations.

	iii.	 Use deep pedigrees and favour sequencing of indi-
viduals that have parents and grandparents with 
marker array information. The parents and grand-
parents of the sequenced individuals do not need 
to be sequenced themselves, but they should be 
genotyped with marker arrays to enable accu-
rate estimation of segregation probabilities of the 
sequenced individuals.

	iv.	 Sequence at least ~2% of the individuals in the pop-
ulation if using a coverage of 2×. Smaller popula-
tions require proportionally greater investment to 
achieve the same imputation accuracy as larger 
populations. Our results can be used as guidance 
for decision-making on level of investment in pedi-
grees of similar size with very closely related indi-
viduals.

Limitations of the study
Use of simulated data instead of real data
Excessive costs make it impossible to generate sequence 
data to empirically evaluate several alternative sequenc-
ing strategies. Therefore, we used simulations. Parame-
ters such as the library preparation and sequencing costs 
could affect the results because they affect the number of 
sequenced individuals at a given sequencing coverage. In 
general, our simulated results were in line with observa-
tions on real data [28].

Variant discovery
Besides imputation, variant discovery is the other main 
process affected by the sequencing strategy. In this paper, 
we focused on individual-wise imputation accuracy as an 
indicator of the value of this data for applications such 
as genomic prediction and we did not test the impact 
of the sequencing strategy on variant discovery. How-
ever, as with imputation, sequencing at low coverage 

is a favourable sequencing strategy for variant discov-
ery, especially for increasing discovery rate of rare vari-
ants [41, 42]. We previously estimated that ~75% of the 
variants discovered in 26 individuals sequenced at 30× 
can be discovered with the same individuals sequenced 
at 2× with low false discovery rate [40]. This discovery 
rate is expected to further increase with the large sample 
sizes that are needed for imputation. Other studies have 
placed the optimum sequencing coverage for variant dis-
covery at a higher coverage of 10 to 12× [7]. Sequencing 
a subset of individuals at high coverage may improve the 
variant discovery rate as well as provide a validation set 
for variants discovered with low-coverage sequence data 
[28]. For variant discovery, haplotype-based methods 
such as the second stage of AlphaSeqOpt [18], which is 
designed to assign low coverage to individuals that carry 
haplotypes that are not represented well enough in the 
sequenced individuals, may help reduce redundancy 
between the sequenced individuals and increase the 
number of variants discovered.

Classification of variants by minor allele frequency
We found that a sequencing coverage of 2× provided the 
highest imputation accuracy. Druet et  al. [7] previously 
estimated that the best imputation accuracy with Beagle 
[22] was obtained at a higher coverage of 8x for all minor 
allele frequency categories except for rare variants, for 
which 2× was the optimal coverage. In our study, we did 
not assess imputation accuracy based on minor allele fre-
quency of the variants.

Impact of the marker array genotyping strategy
The strategy for genotyping the individuals using marker 
arrays (i.e., how many individuals and at which density) 
has also likely a large influence on the imputation accu-
racy of hybrid peeling [28]. Although we did not test the 
marker array genotyping strategy, hybrid peeling per-
formed well with marker array data that were generated 
following genotyping practices such as those of current 
breeding programs with genomic selection. Our method 
does not replace routine marker array genotyping and 
there exists a body of work on this topic [20, 43–45] that 
can provide marker array genotyping guidelines.

Conclusions
Suitable sequencing strategies for subsequent imputa-
tion with hybrid peeling involve targeting at least ~2% 
of the population for sequencing at a uniform coverage 
around 2×. Hybrid peeling was robust to the method 
used for selecting which individuals to sequence, as long 
as the number of individuals sequenced was large and 
the sequenced individuals were distributed widely across 
all generations in the pedigree, preferably from the third 
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generation of the pedigree onwards, to improve persis-
tence of imputation accuracy in both early and late gen-
erations. Sequencing the sires and dams that contributed 
more progeny and grandprogeny in the population was 
a simple but effective strategy. The sequencing strategy 
that we recommend would be beneficial for generating 
whole-genome sequence data in populations with deep 
pedigrees of closely related individuals.
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