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Abstract 

Background:  European sea bass (Dicentrarchus labrax) is one of the most important species for European aquacul‑
ture. Viral nervous necrosis (VNN), commonly caused by the redspotted grouper nervous necrosis virus (RGNNV), 
can result in high levels of morbidity and mortality, mainly during the larval and juvenile stages of cultured sea bass. 
In the absence of efficient therapeutic treatments, selective breeding for host resistance offers a promising strategy 
to control this disease. Our study aimed at investigating genetic resistance to VNN and genomic-based approaches 
to improve disease resistance by selective breeding. A population of 1538 sea bass juveniles from a factorial cross 
between 48 sires and 17 dams was challenged with RGNNV with mortalities and survivors being recorded and sam‑
pled for genotyping by the RAD sequencing approach.

Results:  We used genome-wide genotype data from 9195 single nucleotide polymorphisms (SNPs) for downstream 
analysis. Estimates of heritability of survival on the underlying scale for the pedigree and genomic relationship 
matrices were 0.27 (HPD interval 95%: 0.14-0.40) and 0.43 (0.29–0.57), respectively. Classical genome-wide association 
analysis detected genome-wide significant quantitative trait loci (QTL) for resistance to VNN on chromosomes (unas‑
signed scaffolds in the case of ‘chromosome’ 25) 3, 20 and 25 (P < 1e06). Weighted genomic best linear unbiased 
predictor provided additional support for the QTL on chromosome 3 and suggested that it explained 4% of the addi‑
tive genetic variation. Genomic prediction approaches were tested to investigate the potential of using genome-wide 
SNP data to estimate breeding values for resistance to VNN and showed that genomic prediction resulted in a 13% 
increase in successful classification of resistant and susceptible animals compared to pedigree-based methods, with 
Bayes A and Bayes B giving the highest predictive ability.

Conclusions:  Genome-wide significant QTL were identified but each with relatively small effects on the trait. Tests of 
genomic prediction suggested that incorporating genome-wide SNP data is likely to result in higher accuracy of esti‑
mated breeding values for resistance to VNN. RAD sequencing is an effective method for generating such genome-
wide SNPs, and our findings highlight the potential of genomic selection to breed farmed European sea bass with 
improved resistance to VNN.
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Background
European sea bass (Dicentrarchus labrax) is a popu-
lar and valuable species for Mediterranean aquacul-
ture, with a production volume of more than 150,000 
tons [1]. Viral nervous necrosis (VNN) is a commonly-
encountered pathogen, which has been detected in 
more than 70 wild or cultured marine and fresh water 
species [2]. Frequent mass mortalities of sea bass due 
to VNN have been reported, especially during the sum-
mer period, with fish being particularly susceptible 
during the larval and juvenile stages [3]. The disease is 
considered to be a primary problem in Mediterranean 
mariculture [4] and, to date, there is no fully effective 
therapeutic agent or vaccine to tackle it [5]. Selective 
breeding can be a valuable tool to prevent the detri-
mental effects of disease outbreaks in farmed livestock 
and fish [6]. Moderate to high heritabilities for disease 
resistance have been reported in numerous aquacul-
ture species, which indicates that genetic progress is 
possible through selective breeding [7]. For resistance 
to VNN in sea bass, a moderate heritability of 0.26 
was recently reported [8], which implies that selective 
breeding has potential as a component of VNN preven-
tion and control.

Recent technological advances in genome-wide 
sequencing and genotyping technology have facilitated 
cost-effective generation of genome-wide marker data, 
even in non-model organisms [9]. Such genotyping data 
can be used in selective breeding programs to increase 
the accuracy of breeding value predictions for selec-
tion candidates, as compared to the classical breeding 
approach where breeding values are typically estimated at 
the family level using pedigree data [10, 11]. The genetic 
architecture of most traits relevant to farmed animal pro-
duction (e.g. growth and disease resistance) is polygenic 
[12, 13], which explains why the application of marker-
assisted selection in aquaculture has had limited success, 
with a few exceptions associated with major-effect loci 
[14–17]. Therefore, as for terrestrial livestock, genomic 
prediction [18] is an effective approach to improve selec-
tion accuracy compared to traditional pedigree-based 
approaches in aquaculture breeding programs [19–21].

Restriction-site associated DNA (RAD) sequencing is 
a reduced representation high-throughput sequencing 
technique for the concurrent detection and genotyp-
ing of single nucleotide polymorphisms (SNPs) in mul-
tiplexed samples, each containing a unique nucleotide 
barcode [22]. RAD sequencing and similar genotyp-
ing-by-sequencing techniques rely on the digestion of 
genomic DNA with a restriction enzyme and subsequent 
high-depth sequencing of the flanking regions. Such 
genotyping-by-sequencing techniques have been applied 
in a wide range of aquaculture species [23], both for 

genome-wide association studies (GWAS) [24–26] and 
genomic selection studies [27–31].

The aim of this study was to investigate genetic resist-
ance to VNN in sea bass juveniles, using a RAD sequenc-
ing approach to generate genome-wide SNP data from 
1538 individual disease-challenged fish. Heritability esti-
mates were obtained using both pedigree and genomic 
relationship matrices for survival status (dead/alive) on 
the underlying liability scale. GWA approaches were used 
to test associations of both individual SNPs and genomic 
regions with resistance to VNN. Finally, genomic predic-
tion of breeding values for resistance to VNN was tested 
using several approaches to evaluate the potential of 
genomic selection for genetic improvement of resistance 
to VNN in seabass.

Methods
Sample collection and disease challenge
The population of fish for the VNN disease challenge 
was obtained by artificial fertilization of 18 dams and 
49 sires from the Ferme Marine de Douhet breeding 
nucleus (Oléron, France). Five factorial mating blocks, 
each comprising 9 to 10 sires and 3 to 5 dams, were cre-
ated in February 2014. The fertilized eggs of each dam 
were transferred to individual incubators. Following egg 
hatching, equal numbers of larvae from each incubator 
were transferred in a single tank and reared in common 
environmental conditions.

The fish (at a size of ~ 10 g) were challenged at the Unité 
de Pathologies Virales des Poissons—ANSES facility 
(Plouzané, France). Autopsies and extensive bacteriologi-
cal and virological analyses were carried out on receipt of 
fish to confirm their health status. After 4 weeks of accli-
matization, 1990 individuals distributed in three tanks 
were immersed for 2  to  3  h  in static seawater, contain-
ing 1 × 105 50% tissue culture infective dose (TCID50) 
per ml of the W80 betanodavirus strain, which was pro-
duced and titered in striped snakehead cells (SSN-1), 
as previously described [32]. Strain W80 belongs to the 
redspotted grouper nervous necrosis virus (RGNNV) 
genotype, the most common NNV type in the Mediter-
ranean area [33]. A negative control tank that consisted 
of sea bass juveniles from the same population (n = 200) 
immersed with non-infected SSN-1-cell supernatant was 
also included. After infection, all fish were maintained 
at 27 ± 1  °C in an open water circuit. A pre-test of the 
experimental conditions was conducted to confirm the 
virulence of the pathogen.

RAD library preparation and sequencing
DNA was extracted from fin samples of the challenged 
fish using the REALPure genomic DNA extraction kit 
(Durviz S.L.) and treated with RNase. Each sample was 
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quantified by spectrophotometry (Nanodrop), qual-
ity-assessed by agarose gel electrophoresis, and finally 
diluted to a concentration of 20 ng/µL in 5 mmol/L Tris, 
pH 8.5 using a Qubit Fluorometer (Invitrogen).

The protocol for RAD library preparation followed 
the methodology originally described in Baird et al. [22]. 
Briefly, each sample (0.72  µg parental DNA per 0.24  µg 
offspring DNA) was digested at 37  °C for 60  min with 
the high-fidelity restriction enzyme SbfI (that recog-
nises the CCT​GCA​|GG motif ) − (New England Biolabs; 
NEB) using 6 U Sbf I per µg genomic DNA in 1 × Reac-
tion Buffer 4 (NEB) at a final concentration of 1 µg DNA 
per 50  µL reaction volume. Reactions (12  µL final vol-
umes) were then heat-inactivated at 65  °C for 20  min. 
Individual specific P1 adapters, each with a unique 
5–7 bp barcode, were ligated to the Sbf I-digested DNA 
at 20  °C for 60 min by adding 1.8/0.6 µL of 100 nmol/L 
P1 adapter, 0.45/0.15 µL of 100 mmol/L rATP (Promega), 
0.75/0.25  µL 10 × reaction buffer 2 (NEB), 0.36/0.12  µL 
T4 ligase (NEB, 2  M U/mL) and reaction volumes for 
each parental/offspring sample were completed to 45/15 
µL with nuclease-free water. Following heat inactivation 
at 65 °C for 20 min, ligation reactions were slowly cooled 
down to room temperature (over 1 h), then combined in 
appropriate multiplex pools. Shearing (Covaris S2 soni-
cation) and initial size selection (300 to 600 bp) by aga-
rose gel separation was followed by gel purification, end 
repair, dA overhang addition, P2 (individual specific 
adapters) paired-end adapter ligation, library amplifica-
tion, as in the original RAD protocol [22, 34]. A volume 
of 150 µL of each amplified library (16 to 18 PCR cycles, 
library-dependent) was size-selected (400  to  700  bp) by 
gel electrophoresis [35]. Following a final gel elution step 
into 20 µL EB buffer (MinElute Gel Purification Kit, Qia-
gen), 66 libraries (24 animals each) were sent to BMR in 
Italy, for sequencing. Libraries were run in 14 lanes of an 
Illumina NextSeq 500, using 75 base paired-end reads 
(v2 chemistry). The sequence reads were deposited at the 
NCBI Sequence Read Archive (SRA) under the accession 
number PRJNA407892.

SNP identification and genotyping
Sequence reads of low quality, with a missing restric-
tion site, or with ambiguous barcodes and PCR dupli-
cates were discarded. The remaining reads were aligned 
to the European sea bass reference genome [36] assem-
bly GCA_000689215.1 using the Bowtie2 program [37]. 
Aligned reads were sorted into RAD loci and genotypes 
were called using Stacks software 1.4 [38]. The likelihood-
based SNP calling algorithm [39] implemented in Stacks 
evaluates each nucleotide position at each RAD-locus of 
all individuals, using a maximum likelihood approach to 

differentiate true SNPs from putative sequencing errors. 
SNP data for downstream analyses were obtained after 
the following quality control (QC) steps: RAD loci were 
formed using a minimum stack depth of 10 (parental 
samples) or 5 (offspring samples) reads. Only RAD loci 
with a maximum of two SNPs were considered for down-
stream analysis. SNPs that had a minor allele frequency 
(MAF) less than 0.05 and more than 25% missing data 
and those that deviated from expected Hardy–Weinberg 
equilibrium (P < 1e–06; parental samples) were discarded.

Parentage assignment
Parentage assignment was performed with the R/hsphase 
program [40] using all SNPs that passed QC and allowing 
for a maximum genotyping error of 3.5%. The pedigree 
obtained using this approach was further validated for 
potential erroneous assignments using the FImpute soft-
ware [41].

Estimation of heritabilities
Variance components were estimated using the R/BGLR 
software [42]. The probit link function was used to con-
nect the observed binary phenotype (0 = dead, 1 = alive) 
with the latent variable (the underlying liability). The fol-
lowing model was applied:

where l is a vector of latent variables, b a vector of the 
fixed effects (intercept and tank), X the incidence matrix 
relating phenotypes with the fixed effects, Z the inci-
dence matrix relating phenotypes with the random ani-
mal genetic effects, u the vector of random animal 
genetic effects with the following distribution N

(
0,Aσ

2
g

)
 , 

where A is the pedigree-based relationship matrix, which 
was replaced with the genomic relationship matrix G [43] 
for certain analyses as described below, σ2g is the additive 
genetic variance, and e is a vector of residuals with the 
following distribution N

(
0, Iσ2e

)
 , where σ2e is the residual 

variance and I the identity matrix.
The parameters of this model were estimated by Monte 

Carlo Markov chain (MCMC) Gibbs sampling (11 million 
iterations; burn-in: 1 million; thin: 1000). Convergence of 
the resulting posterior distributions was assessed both 
visually (inspecting the resulting MCMC plots) and ana-
lytically using the R/coda v0.19-1 software [44]. Herit-
ability for survival on the underlying scale was estimated 
as:

(1)l = Xb+ Zu + e,

h
2
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σ
2
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where σ2g is the estimate of the additive genetic variance 
and σ2e the residual variance, which was set equal to 1 
because it is not identifiable in threshold models [45, 46].

Genome‑wide association study (GWAS)
To test the association of individual SNPs with resist-
ance to VNN, a ‘classical’ genome-wide association study 
(CGWAS) was performed using the R/gaston software 
[47]. The mixed model applied for overall survival on 
the observed scale had the same format as in Eq. (1) but 
with the addition of the genotype of an individual SNP 
as a fixed effect. Variance components were estimated 
using the penalized quasi-likelihood approach [48]. The 
genome-wide significance threshold was calculated using 
a Bonferroni correction (0.05/N), where N represents the 
number of QC-filtered SNPs across the genome.

In addition to the CGWAS approach, weighted 
genomic best linear unbiased predictor (WGBLUP) was 
performed [49] to estimate SNP effects by using genomic 
estimated breeding values (GEBV) [50]. SNP weights 
were estimated using non-overlapping windows of 10 
adjacent SNPs. Explained additive genetic variance was 
estimated using subsequent non-overlapping windows 
including adjacent SNPs within a distance of 0.5 Mb. Ini-
tially, the weighted genomic relationship matrix was cre-
ated following the method of VanRaden [43] as:

where Z is the design matrix relating genotypes of each 
SNP with phenotypes, D is a weight matrix for all SNPs, 
and q is a weighting vector derived from the observed 
SNP frequencies. Briefly, WGBLUP was carried out as 
follows [49]:

a.	 Initialize D = I and t = 1 , where I is the identity 
matrix and t is the iteration number;

b.	 Calculate G∗;
c.	 Estimate GEBV using GBLUP;
d.	 Estimate the SNP effects from GEBV based on the 

equation α̂ = qDZ′G∗û , where α̂ represents the vec-
tor of SNP effects and û vector of GEBV;

e.	 Calculate the weight for matrix D for each SNP: 
d
(t+1)
ii

=

∑
n

i=1 u
2
i

n
 , where n = 10 represents number of 

adjacent SNPs;
f.	 Normalize the weights of SNPs such that the total 

genetic variance remains constant;
g.	 Loop to step (d) (three iterations).

The percentage of additive genetic variance explained 
by each genomic region was estimated by non-overlap-
ping windows of 0.5 Mb as follows:

G∗
= ZDZ′q,

where w denotes group of SNPs within the tested 
window.

This analysis was performed using the THRGIBBS1F90 
program from the BLUPF90 software suite [51, 52] to 
estimate the GEBV, combined with three iterations using 
PreGSF90 and PostGSF90 [53].

Genomic prediction
To assess the potential of genomic selection for improved 
resistance to VNN in sea bass breeding programs, the 
accuracy of GEBV was assessed and compared to EBV 
obtained with pedigree-based approaches. Missing geno-
types for the SNPs that passed QC filters were imputed 
using FImpute [41]. Several commonly used genomic 
selection models were applied to the data using the R/
BGLR software [42]: rrBLUP, BayesA, BayesB [18] and 
BayesC [54]. In addition, pedigree-based BLUP [10] was 
evaluated using the same software. The general form of 
the fitted models was as in Eq. (1):

where Z is the incidence matrix relating the underly-
ing liability with the genotypes and α the vector of SNP 
effects using the corresponding prior distribution for 
each of the above Bayesian models. The parameters of 
each model were estimated by MCMC using Gibbs sam-
pling (1.1 million iterations; burn-in: 100,000; thin: 100). 
Convergence of the resulting posterior distributions was 
assessed both visually (inspecting the resulting MCMC 
plots) and analytically using the R/coda v0.19-1 software 
[44].

Six-fold cross-validation was performed in order to 
test prediction accuracy of correctly classifying animals 
in the validation set as resistant or susceptible. The data-
set was randomly split into sequential training (n = 1090 
individuals) and validation sets (n = 218). The number of 
survivors and mortalities in each validation set was pro-
portional to the overall survival of the challenged popula-
tion. In the validation sets, the phenotypes of the animals 
were masked, and their (genomic) estimated breeding 
values—(G)EBV—were estimated based on the prediction 
model derived from the training set. This cross-validation 
procedure was repeated five times. Receiver operator 
characteristic (ROC) curves were used to assess the effi-
cacy of classifying the animals as survivors or mortalities, 
using either the pedigree- or the genomic-based models. 
The area under the curve (AUC) metric [55, 56] was used 

Var(αi )

σ
2
α

× 100% =

Var
(∑i=w

i zi ûi

)

σ
2
α

× 100%,

(2)l = Xb+ Zα+ e,
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to interpret the performance of the genomic prediction 
models, with values of 1 representing the perfect classifier.

Results
Disease challenge
The challenge study was conducted for 7  weeks, with 
mortalities recorded daily. Characteristic clinical signs 
of VNN were observed in each disease-challenged tank. 
In this experiment, the total percentage of mortal-
ity reached 48% (ranging from 40 to 56% depending on 
the tank), with four successive peaks of mortality (days 
8, 15, 20 and 27); (see Additional file 1: Table S1). Pres-
ence of the virus was confirmed in the anterior kidneys 
and spleens of dead individuals at 1 week post-infection, 
using primary cell culture coupled with an indirect fluo-
rescent antibody test (IFAT). No mortality was observed 
in the control tank. Two of the challenge tanks expe-
rienced a drop in oxygen concentration at day 27 post-
infection, but the fast return to a normal situation within 
24 to 48 h after the incident without observing abnormal 
behavior or excess mortality led to the conclusion that 
this temporary oxygen drop did not affect the rest of the 
experiment. Furthermore, oxygen-related mortalities 
(day 27 post-infection) were excluded, resulting in 1538 
VNN-challenged animals used for downstream analysis.

SNP identification and genotyping
In total, 6.34 million (s.d. = 3.95 million) and 2.83 million 
(s.d. = 1.38 million) sequence reads passed the QC filters 
for the parental and offspring samples, respectively. The 
mean number of putative RAD loci identified was 45,631 
(s.d. = 7099) and 43,538 (s.d. = 4543) for parents and off-
spring, with mean coverages of 68× (s.d. = 32) and 26× 
(s.d. = 12), respectively. The RAD loci were distributed 
relatively evenly across the sea bass genome assembly 
(see Additional file 2: Table S2). Only animals with fewer 
than 30% missing genotype data were retained for down-
stream analysis (67 parents and 1322 offspring). A total 
of 17,004 putative SNPs were identified, of which 9195 
passed the QC filters and were retained for downstream 
analysis (Table  1) and (see Additional file  3: Table  S3). 
Animals (n = 11) with a genotypic similarity greater than 
90% were discarded as potential replicated samples.

Parentage assignment
Progeny were assigned to unique parental pairs, allowing 
for a maximum genotypic error of 3.5%. One thousand 
two hundred and ninety-seven offspring were uniquely 
assigned, which revealed that the challenged popula-
tion (produced from the factorial batch-spawning design 
described above) comprised 140 full-sib families (48 sires 

and 17 dams), with 1 to 32 animals per family and a mean 
size of 9 (s.d. = 8). The contribution of individual dams 
to the population ranged from 1 to 267 animals, with a 
mean of 77 (s.d. = 68), while the contribution of sires 
ranged from 1 to 66, with a mean of 27 (s.d. = 18). Further 
testing of parentage assignment results using FImpute 
identified four animals as potentially mis-assigned. These 
individuals were discarded, which left 1293 animals origi-
nating from 48 sires and 17 dams in the final dataset used 
for the subsequent genetic analyses. The overall sur-
vival of these individuals in the VNN challenge was 42% 
(Fig. 1). The survival rate varied substantially among the 
offspring of individual sires (0–100%) and dams (0–69%), 
which indicates genetic variation for resistance to VNN.

Heritability estimates
Estimates of heritability of overall survival on the under-
lying liability scale were significant and moderate, at 0.27 
(highest posterior density, HPD 95% interval 0.14–0.40) 
using the pedigree relationship matrix and at 0.43 (HPD 

Table 1  Number of QC-filtered SNPs per chromosome

Chromosome Corresponding scaffold 
(seabass_v1.0)

Number 
of markers

1 HG916827.1 330

2 HG916828.1 393

3 HG916829.1 321

4 HG916830.1 387

5 HG916831.1 367

6 HG916832.1 355

7 HG916833.1 293

8 HG916834.1 375

9 HG916835.1 237

10 HG916836.1 340

11 HG916837.1 370

12 HG916838.1 268

13 HG916839.1 371

14 HG916840.1 367

15 HG916841.1 336

16 HG916842.1 254

17 HG916843.1 145

18 HG916844.1 420

19 HG916845.1 390

20 HG916846.1 404

21 HG916847.1 376

22 HG916848.1 334

23 HG916849.1 322

24 HG916850.1 259

25 HG916851.1 1181

Total 9195
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95% interval: 0.29–0.57) using the genomic relationship 
matrix.

Genome‑wide association study (GWAS)
In the CGWAS, SNPs that exceeded the genome-wide 
significance level were located on chromosomes 3, 20 and 
25 (chromosome 25 corresponds to unassigned scaffolds 
and contigs of the reference genome assembly; P < 1e–05; 
R2: 0.03–0.05; Fig.  2). The WGBLUP analysis provided 
support for the putative QTL on chromosome 3, with 
the 0.5-Mb window containing the QTL-associated SNPs 
estimated to explain approximately 4% of the genetic 
variation. The putative QTL on chromosomes 20 and 25 
were estimated to explain 1.5 and 2% of the genetic vari-
ation, respectively, in the WGLUP. Additional putative 
QTL regions that explained more than 2% of the additive 
genetic variance were identified on chromosomes 9, 18, 
21 and 22 (Fig. 3).

Genomic prediction
The genomic prediction models successfully classified 
animals of the validation set with a success rate ranging 
from 67 to 70%, representing improvements of 8 to 13% 
over pedigree-based BLUP (PBLUP) (Table 2, Fig. 4). The 
best classifications were obtained with the Bayes A and 
Bayes B methods, corresponding to a success rate of 70% 

(Table 2) for correct classification (based on the AUC val-
ues of the ROC curves; Fig. 4). 

Discussion
European sea bass is a farmed species of paramount 
importance for Mediterranean aquaculture. Breed-
ing for improved genetic resistance to VNN offers a 
promising avenue for reducing economic losses due to 
this disease and for improving animal welfare. A small 
number of family-based selective breeding programs 
exist for sea bass, with growth and disease resistance as 
the major target traits. Applying genomic information 
to selective breeding schemes facilitates direct selec-
tion for favorable alleles at major QTL (marker-assisted 
selection) and/or incorporation of genome-wide mark-
ers into the prediction of breeding values (genomic 
selection). Genomic prediction methods have been 
repeatedly shown to increase selection accuracy com-
pared to pedigree-based approaches in aquaculture [29, 
30, 57], which should translate to faster rates of genetic 
gain. High-density SNP arrays have been used for 
genomic selection, but these require substantial prior 
investment for development and application. As such, 
SNP arrays may be too expensive for routine genotyping 
in small to medium scale selective breeding programs, 
and more cost-effective genotyping methods are highly 
desirable. Techniques such as RAD sequencing, which 
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Fig. 1  Daily mortality rates during the VNN disease challenge
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require minimal prior investment, offer a cost effective 
alternative of generating genome-wide SNP datasets, 
even in the absence of prior genomic resources [22]. 
RAD sequencing and other genotyping-by-sequencing 
approaches are therefore becoming increasingly com-
monplace in aquaculture genetics and breeding [23].

Our study is the first application of high through-
put sequencing to study genetic resistance of sea bass 
to VNN. The estimated heritability of resistance was 
moderate to high (ranging from 0.27 to 0.43). The herit-
ability estimate obtained by using the pedigree relation-
ship matrix (0.27) was in accordance with a recently 
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Fig. 2  Genome-wide association plot for survival during the VNN challenge using single SNP GWAS
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estimated heritability (0.26) for resistance to VNN in 
several sea bass populations, also using pedigree [8]. 
These significant heritability estimates indicate that the 
aquaculture industry can benefit from the application 
of selective breeding for sea bass resistant to VNN. The 
reason that a higher heritability estimate was obtained 
when using the genomic relationship matrix (0.43) 
is not clear, but it is plausible that linkage disequilib-
rium generated by recent selective breeding may cause 

overestimation of additive genetic variance when using 
a genomic relationship matrix [58].

The CGWAS identified genome-wide significant QTL 
in several genomic regions (chromosomes 3, 20, 25, with 
chromosome 25 representing unassigned genome con-
tigs and scaffolds). The single SNP CGWAS approach 
may lack statistical power to detect QTL when compared 
to methods in which all SNPs are used simultaneously, 
because of a false assumption of independence between 
SNPs [49]. WGBLUP is an approach that combines the 
computational efficiency of GBLUP with an increase in 
statistical power for QTL detection [50].

The genomic region that explained the highest percent-
age of additive genetic variance in the WGBLUP (~ 4%) 
was located on chromosome 3 and was also detected in 
the CGWAS. However, this may be an overestimation of 
the explained additive variance because threshold mod-
els often lead to overestimates of genetic variance [59]. 
In spite of some degree of discrepancy between the two 
GWAS approaches used, both highlight significant QTL 
that may play a role in host resistance to VNN, but also 
suggest that the trait is polygenic or ‘oligogenic’ in nature. 
In a similar study on resistance to VNN in Asian sea bass, 
no major QTL were identified [60], which supports the 
hypothesis that genetic resistance to VNN may be under 

Table 2  Percentage of  VNN challenged sea bass 
with  correctly predicted survival status for  pedigree-
based (PBLUP) and genomic prediction methods

Values obtained using area under curve (AUC) from ROC curves

Five replicates of sixfold cross-validation

Replication PBLUP rrBLUP Bayes A Bayes B Bayes C

1st 0.63 0.67 0.70 0.71 0.67

2nd 0.62 0.66 0.69 0.70 0.67

3rd 0.62 0.67 0.70 0.69 0.68

4th 0.62 0.66 0.70 0.70 0.68

5th 0.62 0.67 0.70 0.70 0.69

Mean 0.62 0.67 0.70 0.70 0.68
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Fig. 4  ROC curve and corresponding AUC metric for BayesB-based predictions of sea bass survival or mortality during the VNN challenge. The plot 
was obtained from aggregation of a sixfold cross validation scheme



Page 9 of 11Palaiokostas et al. Genet Sel Evol  (2018) 50:30 

the control of many genomic regions, each with a minor 
to moderate effect. In such situations, genomic selection 
is likely the most appropriate approach for using genetic 
markers to improve selective breeding.

The results from the genomic prediction approach used 
in the current study were encouraging for practical imple-
mentation of genomic selection for genetic resistance in 
sea bass. For traits like disease resistance, which cannot 
be measured directly on selection candidates, genomic 
selection benefits from the use of within-family genetic 
variation, compared to pedigree-based BLUP, which uses 
between-family genetic variation only [61]. Improve-
ments in selection accuracies due to genomic predic-
tion for disease resistance traits have been documented 
in various finfish aquaculture species, including Atlantic 
salmon [21], rainbow trout [29], and gilthead sea bream 
[30]. The AUC metrics derived from the ROC curves 
take the rate of both false positives and false negatives 
into consideration and have been routinely used to test 
the efficacy of prediction models for binary traits both in 
humans [56] and in livestock [62]. Interestingly, our study 
resulted in higher AUC values compared to livestock 
studies that used similar sample sizes and SNP density 
[62, 63], with the best performing models on average cor-
rectly classifying 70% of the validation set. This may be 
related to long-range linkage disequilibrium as a result 
of close genetic relationships between training and vali-
dation sets, which include large numbers of full and half 
siblings. Genetic relationships between reference and 
test populations are known to be a key factor that influ-
ences prediction accuracies in genomic selection [64]. 
However, reliance on these close genetic relationships for 
genomic prediction implies that generalization of these 
results to other populations and reference population 
designs should be undertaken with caution. Furthermore, 
additional testing of genomic prediction at varying SNP 
densities on a wider population is required to ascertain 
the appropriate SNP density for commercial application 
of genomic selection.

Conclusions
We applied RAD sequencing to study the genetic basis of 
resistance to VNN in a large sample of juvenile sea bass 
derived from a commercial breeding program. RAD-
derived SNPs allowed us to perform pedigree assign-
ment in this batch-spawning species, estimate genetic 
parameters, perform GWAS, and test genomic selec-
tion. Genome-wide significant QTL were identified 
with minor to moderate effects on host resistance, on 
chromosomes 3, 20 and on an unassigned genome scaf-
folds. Genomic prediction using the RAD genotype data 
was effective, demonstrating significant improvement in 

prediction accuracy, and facilitating classification of sur-
viving and mortality fish with a success rate of 70% using 
the cross-validation approach. This highlights the utility 
of genotyping-by-sequencing for genomic prediction of 
disease resistance in aquaculture species, and demon-
strates that genomic selection can be an effective method 
for improving resistance to one of the most problematic 
infectious diseases in sea bass aquaculture.
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