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Abstract 

Background:  Hanwoo beef is known for its marbled fat, tenderness, juiciness and characteristic flavor, as well as for 
its low cholesterol and high omega 3 fatty acid contents. As yet, there has been no comprehensive investigation to 
estimate genomic selection accuracy for carcass traits in Hanwoo cattle using dense markers. This study aimed at 
evaluating the accuracy of alternative statistical methods that differed in assumptions about the underlying genetic 
model for various carcass traits: backfat thickness (BT), carcass weight (CW), eye muscle area (EMA), and marbling 
score (MS).

Methods:  Accuracies of direct genomic breeding values (DGV) for carcass traits were estimated by applying fivefold 
cross-validation to a dataset including 1183 animals and approximately 34,000 single nucleotide polymorphisms 
(SNPs).

Results:  Accuracies of BayesC, Bayesian LASSO (BayesL) and genomic best linear unbiased prediction (GBLUP) meth‑
ods were similar for BT, EMA and MS. However, for CW, DGV accuracy was 7% higher with BayesC than with BayesL 
and GBLUP. The increased accuracy of BayesC, compared to GBLUP and BayesL, was maintained for CW, regardless 
of the training sample size, but not for BT, EMA, and MS. Genome-wide association studies detected consistent large 
effects for SNPs on chromosomes 6 and 14 for CW.

Conclusions:  The predictive performance of the models depended on the trait analyzed. For CW, the results showed 
a clear superiority of BayesC compared to GBLUP and BayesL. These findings indicate the importance of using a 
proper variable selection method for genomic selection of traits and also suggest that the genetic architecture that 
underlies CW differs from that of the other carcass traits analyzed. Thus, our study provides significant new insights 
into the carcass traits of Hanwoo cattle.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Hanwoo (Bos taurus coreanae) is an indigenous cattle 
breed in Korea that has been intensively bred for meat 
during the last 30 years [1]. Until the 1980s, Hanwoo cat-
tle were used extensively for farming, transportation and 
religious sacrifices [2] but they have now become popu-
lar for meat production owing to their rapid growth and 

high-quality meat. It is now one of the most economically 
important species in Korea. The extensive marbling of 
the Hanwoo beef is an important factor that influences 
the perception of meat quality in commercial beef pro-
duction [3]. Hanwoo beef is known for its marbled fat, 
tenderness, juiciness and characteristic flavor. In addi-
tion, it has a lower cholesterol content and higher omega 
3 fatty acid content, which makes it healthier than the 
meat from other bovine breeds [4]. In spite of its high 
price, i.e. almost three times that of imported beef meat 
from other breeds [5], Hanwoo beef is very popular both 
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among Korean consumers and abroad because of these 
invaluable traits [6].

The main aim of the Hanwoo beef industry is to 
increase both the quality (marbling, tenderness and 
flavor) and the quantity (carcass weight) of the meat. 
Estimated breeding values for backfat thickness (BT), 
carcass weight (CW), eye muscle area (EMA), and mar-
bling score (MS) are commonly used as selection crite-
ria in attempts to increase meat yield and quality, and 
subsequently to improve the income generated from 
steer feedlots and calf sales [7]. The recently developed 
genomic selection approach is beginning to revolutionize 
animal breeding. It refers to a genetic evaluation method 
that uses phenotypic data and genotypes of dense single 
nucleotide polymorphisms (SNPs) to estimate effects of 
SNPs from a training population and subsequently to 
predict the genetic values of selection candidates based 
on their genotypes [8]. It has been widely applied to dairy 
cattle breeding [9–11] and is now beginning to be used in 
other livestock species [12, 13]. Genomic predictions for 
beef cattle are attractive because many traits that affect 
the profitability of beef production, such as carcass traits, 
are difficult to select for because they are expensive to 
measure or are measured only on the relatives of breed-
ing bulls [14]. Accurate genomic estimated breeding 
values would lead to greater genetic gain for these traits 
[15].

Accuracy of genomic prediction is key to the success 
of genomic selection [13]. Several analytical approaches 
have been proposed to predict genetic values based on 
genomic data, among which genomic (ridge regression) 
best linear unbiased prediction (GBLUP or RRBLUP), 
Bayesian shrinkage (e.g. BayesA) and variable selec-
tion models [e.g. BayesB, BayesCπ, BayesC and BayesL 
(LASSO)] have been widely used [13, 16]. The main dif-
ferences between these models are their assumptions 
concerning the distributions of the effects of genetic 
markers. GBLUP (or equivalent RRBLUP procedures) 
models assume that all effects of SNPs are drawn from 
the same normal distribution and thus, that all SNPs 
have small effects [8]. The Bayesian approaches allow the 
variances of the SNP effects to differ from one another. 
However, Gianola et al. [17]. argued that for BayesA and 
BayesB models there is a strong dependency on the prior 
distributions of the marker variance because, in this case, 
the posterior variance is estimated with only one marker, 
thus its posterior distribution has only one more degree 
of freedom than its prior distribution. BayesCπ, is less 
sensitive to the prior assumption of the marker variance 
compared with BayesA and BayesB models because all 
SNPs have a common variance and the proportion of 
SNPs with no effect (π) has a uniform prior distribution 

that is estimated during the analysis [18]. In BayesC, 
π is considered to be a fixed value [19], which leads to 
more accurate detection of quantitative trait loci (QTL) 
than BayesCπ, especially for traits with a moderate to 
high heritability and when sufficient numbers of records 
are available [20]. However, one drawback of the Bayes-
ian methods is the need for the definition of priors. The 
requirement of a prior for the parameter π is circum-
vented in the BayesL method, which requires less infor-
mation [21, 22].

Several studies have compared the performance of 
statistical methods applied to genomic selection and 
reported that genomic evaluation is more accurate than 
conventional genetic evaluation, see for example in dairy 
cattle [23, 24], beef cattle [25–27], pigs [28], sheep [29] 
and chickens [13, 30]. However, to date the performance 
of genomic selection in Hanwoo cattle has not been 
investigated. In addition, genomic prediction methods 
may perform differently for different traits and, thus lead 
to results that may differ because the genetic architec-
ture that underlies a trait varies with the trait consid-
ered [9, 18]. Several studies have shown that Bayesian 
approaches produce higher accuracies than linear mod-
els when traits are influenced by genes with large effects 
[16, 31–34].

The aim of our study was to evaluate methods for 
genomic prediction in Hanwoo cattle. Three different 
methods, GBLUP, BayesC and BayesL, which differed in 
assumptions about the genetic architecture of traits, were 
used to compare the accuracy of genomic predictions for 
the traits BT, CW, EMA and MS.

Methods
Phenotypic and pedigree data
Phenotypic data from 5218 purebred Hanwoo steers 
produced by 590 young bulls were collected by the Han-
woo Improvement Center of the National Agricultural 
Cooperative Federation (NACF) between 1996 and 
2012 in South Korea during a progeny testing program. 
Pedigree data from 44,538 individuals were used in the 
animal model. The four carcass traits included in the 
analysis, BT, CW, EMA and MS, were recorded at about 
24  months of age on samples collected 24  h postmor-
tem between the 13th rib and the 1st lumbar vertebra, 
according to the Korean carcass grading procedure by 
the National Livestock Cooperatives Federation. MS was 
assessed using a categorical system of nine classes that 
range from 1 (no marbling) to 9 (abundant marbling). 
Because MS data were skewed, they were transformed by 
a natural logarithm to lnMS after adding 1 to all records. 
Table  1 summarizes the statistics used for each trait to 
estimate variance components.
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Genotypes
A total of 1679 animals were genotyped using the Illu-
mina BovineSNP50 K (n = 959) and HD 777 K (n = 720) 
Beadchips (Illumina Inc., San Diego, CA, USA). Com-
mon SNPs between the 50 K and 777 K SNP chips were 
selected which resulted in 43,852 SNPs. All animals with 
more than 10% missing data (N = 68) and those with an 
inconsistency between pedigree and genomic relation-
ships (N = 5) were excluded from further analyses. Phe-
notypic records were available for 1183 of the remaining 
1606 animals that were genotyped (Table  2). To ensure 
overall quality of the samples and a consistent set of 
genotypes, quality control procedures were applied to 
the initial data [35]. SNPs were excluded from further 
analyses if their minor allele frequency (MAF) was lower 
than 0.01 (6679 SNPs) or if the percentage of calls (the 
proportion of SNP genotypes over all animals, calculated 
by the Illumina GenCall analysis software) was less than 
0.98 (2677 SNPs). For the remaining SNPs, any outliers 
[that departed from the Hardy–Weinberg equilibrium 
(p <  10−6) across all animals from one breed] were used 
to identify genotyping errors (302 SNPs). Missing geno-
types were imputed using BEAGLE [36]. Finally, 34,194 
SNPs remained for analyses.

Statistical analysis
Estimation of heritability
Heritability for each carcass trait (Table 1) was estimated 
using the restricted maximum likelihood method (REML) 
for animal models, using BLUPF90 (AIREMLF90) soft-
ware [37]. The mixed model used was:

y = Xb+ Zu + e,

where y is the vector of observations; b is the vec-
tor of fixed effects including slaughter date and batch 
effects as a contemporary group (369, 369, 368 and 
176 levels for BT, CW, EMA and MS, respectively), 
and slaughter age (days from birth to slaughter) as a 
covariate; u is the vector of random animal effects and 
is assumed to follow a normal distribution N

(

0,Aσ 2
a

)

,  
A and σ 2

a  are the numerator relationship matrix and 
polygenic variance, respectively; e is the vector of ran-
dom residual effects and is assumed to follow a normal 
distribution N

(

0, Iσ 2
e

)

 , where I is an identity matrix 
including all animals with records and σ 2

e  is the error 
variance; and X and Z are design matrices that relate 
records to fixed effects and random animal effects, 
respectively.

Genomic prediction
Genomic predictions were performed for animals that 
had both genotype and phenotype records using three 
different models, i.e. GBLUP, BayesL [38] and BayesC 
[19]. GBLUP was applied using AIREMLF90 software 
[37] as follows:

where yc is a vector of the trait of interest, which was 
adjusted for fixed effects (slaughter date and batch 
effects as a contemporary group, and slaughter age as 
a covariate) based on the full dataset (see, Table  1); 1 
is a vector of 1  s; µ is the overall mean; Z is the inci-
dence matrix of direct genomic breeding values (DGV) 
and g is the vector of DGV and is assumed to follow a 
normal distribution N

(

0,Gσ 2
g

)

, where G is the marker-
based genomic relationship matrix as a genomic rela-
tionship matrix and σ2g the genetic variance captured by 
the markers; e is a vector of random residual effects and 
is assumed to follow a normal distribution N

(

0, Iσ 2
e

)

,  
where I is an identity matrix; and σ2ε is the residual 
variance.

The G-matrix was built using the information from 
genome-wide dense SNPs [39] with the default options 
(except for a MAF of 0.01) in the preGSf90 program 
[40]. In the Bayesian framework, genomic analyses were 

yc = 1µ+ Zg + e,

Table 1  Summary statistics for the phenotypic data used to estimate variance components

BT backfat thickness, CW carcass weight, EMA eye muscle area, MS marbling score

Trait (unit) Number of animals in the pedigree Number of animals with records Mean (SE) Min. Max. SD

BT (mm) 44,538 5218 8.60 (0.05) 1 35 3.74

CW (kg) 44,538 5217 341.01 (0.63) 158 518 45.26

EMA (cm2) 44,538 5213 78.73 (0.13) 40 123 9.18

lnMS (Score) 44,538 3382 1.38 (0.01) 0.69 2.30 0.37

Table 2  Summary statistics for  the phenotypic data used 
in the genomic analysis

BT backfat thickness, CW carcass weight, EMA eye muscle area, MS marbling 
score

Trait (unit) Number of 
animals

Mean (SE) Min. Max. SD

BT (mm) 1183 8.24 (0.10) 2 24 3.53

CW (kg) 1183 360.18 (1.16) 183 476 39.85

EMA (cm2) 1183 82.99 (0.26) 55 121 8.78

lnMS (Score) 1183 1.34 (0.01) 0.69 2.30 0.34



Page 4 of 13Mehrban et al. Genet Sel Evol  (2017) 49:1 

performed using GS3 software [38]. The allelic substitu-
tion effect of each SNP was estimated using BayesL and 
BayesC, which were fitted with values in the covariate 
codes as 0, 2 (for homozygotes) and 1 (for heterozygotes) 
using the following model:

where yc is a vector of corrected phenotypes as defined 
before, 1 is a vector of 1s; µ is the overall mean, m is the 
number of SNPs; zi is the vector of genotype covariates 
for SNPi, αi is the allelic substitution effect of SNPi, δi is 
an indicator variable for the presence (1) or absence (0) 
of the ith SNP in the model (for the BayesL method, δi 
is equal to 1 for all (i); ε is the vector of random resid-
ual effects assumed to follow a normal distribution 
N
(

0, Iσ 2
ε

)

 , where I is an identity matrix; and σ 2
ε  is the 

residual variance.
In the BayesL method, the prior distribution for αi 

(with δi = 1) follows a normal distribution N
(

0, Iσ 2
α

)

 and 
the prior distribution was as follows [38]:

The prior distribution for σ 2
α for all methods, was an 

inverted χ2 distribution with two degrees of freedom 

and expectation was equal to σ 2
a /(1− π)

m
∑

i=1

2piqi as pro-

posed by Habier et al. [18] where σ 2
a  is the estimated addi-

tive genetic variance using the animal model and p and 
q are the allelic frequencies at the ith SNP. In the BayesC 
method, the value of π is fixed. To identify the most suit-
able proportion of SNPs with no effect, the parameter π 
was considered to be equal to 0.999 and π values ranging 
from 0.91 to 0.99 in 0.02 increments (six values of π) were 
used. The residual variance was also assigned an inverted 
χ2 distribution with two degrees of freedom and the 
expected value was equal to the residual variance as esti-
mated using the animal model. The Markov chain Monte 
Carlo (MCMC) process was run for 550,000 cycles with 
50,000 iterations as burn-in with a thinning interval of 50, 
so the effect of SNPs was estimated as a posterior mean of 
10,000 samples.

The DGV for each animal in the validation set was esti-
mated as the sum of the cross-product of animal geno-
type and the estimated SNP effect over all SNPs.

To confirm results of Bayesian analyses, a single-marker 
regression was run by using the Wombat software [41] 
with the following model:

yc = 1µ+

m
∑

i=1

ziαiδi + ε,

Pr
(

αi|τ
2
)

= N
(

0, τ 2i

)

,

Pr
(

τ 2i

)

=
�
2

2
exp

(

−�
2
∣

∣

∣
τ 2i

∣

∣

∣

)

.

yc = 1µ+ wisi + Zu + e,

where yc is a vector with adjusted phenotypes as defined 
before, 1 is a vector of 1s; µ is the overall mean; wi is the 
vector of genotype covariates for SNPi; si is the allelic sub-
stitution effect of the ith SNP; u is the vector of random 
animal effects and is assumed to follow a normal distribu-
tion N

(

0,Aσ 2
a

)

, where A and σ 2
a  are the numerator rela-

tionship matrix and polygenic variance, respectively; e is 
the vector of random residual effects and is assumed to 
follow a normal distribution N

(

0, Iσ 2
e

)

, where I is an iden-
tity matrix including all animals with records and σ 2

e  is the 
error variance; and Z is a design matrix that relate records 
to random animal effects.

To adjust for multiple testing, a Bonferroni-corrected 
threshold of 0.05/N (=1.46 × 10−6) was used, where N is 
the number of SNPs used for the analyses.

Validation of models
The dataset was randomly split into five approximately equal 
subsets (fivefold cross-validation). Four subsets were used as 
training populations (≈946) and the fifth subset as a valida-
tion sample (≈237). The animals for the various subsets were 
selected randomly, except that paternal half-sibs were always 
placed in the same subset [42]. Cross-validation was replicated 
10 times. Pedigree relationships within folds were on aver-
age equal to 0.038 and between fivefolds ranged from 0.023 
to 0.031, with an average relationship of 0.026 for 10 replica-
tions. The predictive ability of DGV was determined by cal-
culating the correlation between the DGV and the adjusted 
phenotypes for each of the five subsets. To estimate the pre-
diction accuracy for each trait, predictive ability was divided 
by the square root of the heritability for that trait [43]. The 
accuracy for each replicate was obtained as the mean of the 
accuracies for the fivefold cross-validations of the ten repli-
cates. The slope of the regression of the adjusted phenotypes 
on DGV was calculated as a measurement of the bias of the 
DGV in each method and trait. In addition, the mean square 
error (MSE) was predicted as the mean of the square differ-
ences between corrected phenotypes and DGV. In order to 
investigate the impact of the size of reference population on 
accuracy of DGV, analyses were also performed with training 
population sizes of 473 (50%) and 710 (75%) animals that were 
randomly sampled from the original training set. The valida-
tion population size was kept constant for all training sample 
sizes as in [44]. The means of accuracies and biases for differ-
ent traits and methods were computed using the 10 replicates 
of the same cross-validation structure previously described.

Estimation of genomic heritability
In GBLUP, the genomic variance (σ2g) is estimated by 
REML. However, for the BayesC and BayesL methods, σ2g 

is estimated by 2σ 2
α (1− π)

m
∑

i=1

piqi [38], where σ 2
α is the 

common effect marker variance, π is the proportion of 
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SNPs with no effect, pi and qi are the allelic frequencies at 
SNP i. Genomic heritability (h2g) was estimated according 
to the following formula [45]:

where h2 and σ 2
a  are the pedigree-based heritability and 

additive genetic variance, respectively.

Estimation of effective population size and expected 
accuracy
The past effective population size (Ne) for the tth gen-
eration (t = (2ct)

−1), was estimated using the following 
model [46]:

where r2 is the pair-wise linkage disequilibrium, n is 
the number of animals sampled (1606 animals), c is the 
recombination rate (Morgan) defined for a particular 
physical distance and α is a correction for the occurrence 
of mutations (α = 2) [47]. Due to the sensitivity of the 
estimated effective population size to the threshold that 
is set for MAF [46], we considered two different MAF 
thresholds, i.e. 0.1 and 0.2.

The expected accuracy of the genomic prediction 
(rgĝ ) in our population was calculated using the formula 
derived by Daetwyler et  al. [32], i.e. rgĝ =

√

NPh2

NPh2+Me
. 

This formula depends on h2 (heritability of the trait), NP 
(number of animals in the training population) and Me 
(the number of independent chromosome segments). Me 
was calculated by using two different approximations: (1) 
Me1 =

2NeL
ln(4Nel)

 [48] and (2) Me2 = 2NeL [49], where Ne is 
the effective population size, L is the genome length and l  
is the average chromosome length. Therefore, these two 
approximations of Me lead to two different estimates of rgĝ.

Results and discussion
Estimation of heritability
The pedigree-based estimates of variance components 
for the carcass traits are in Table 3. Medium to high her-
itabilities were estimated for carcass traits in Hanwoo 
cattle. Estimated heritabilities for CW and EMA agreed 
with those previously reported in Hanwoo cattle by Lee 
et al. [7]. However, estimated heritabilities for BT and MS 
were higher (+9 and +11.3, respectively) than those in 
the study of Lee et al. [7]. In Japanese Black cattle, Onogi 
et  al. [50] reported similar heritabilities for EMA (0.43) 
and MS (0.66) but a higher heritability for CW (0.56) 
than our study. In a study on the Angus breed, Saatchi 
et al. [25] reported higher heritabilities for CW and EMA 

h2g = h2
σ 2
g

σ 2
a

,

E

(

r2 −
1

n

)

=
1

4Nec + α

and lower heritabilities for BT and MS than those found 
here. Our estimated heritabilities for carcass traits were 
within the range of those obtained for multi-breed com-
mercial beef cattle by Rolf et al. [16].

Estimation of effective population size
We used the average extent of linkage disequilibrium 
(LD) in the genome to estimate effective population 
sizes at various times in the past. Estimates of Ne were 
not influenced by the threshold set for MAF i.e. 0.10 or 
0.20 [see Additional file 1: Figure S1]. Therefore, we used 
a threshold of 0.10 for MAF to estimate Ne. The results 
showed that Ne declined across generations to reach a 
value of 224 in the latest generation. The effective popu-
lation size that was estimated here for Hanwoo cattle was 
not consistent with that reported by Lee et al. [51], who 
also found that it declined across generations but to 98, 
three generations ago. However, we used a sample size 
that was approximately 6 times larger than that used by 
Lee et al. [51] and also a much larger number of SNPs to 
estimate linkage disequilibrium (r2). Moreover, Li and 
Kim [52] estimated an effective population size of 402, 
five generations ago, by using 547 Hanwoo bulls and a 
50 K SNP chip, whereas our estimate for that generation 
was 298. With the exception of the Ne reported by Mar-
quez et al. [53] (Ne = 445) for American Red Angus beef 
cattle and by Saatchi et al. [25] (Ne = 654) for American 
Angus beef cattle, most studies in beef and dairy cattle 
[54–58] have found smaller Ne than in the present study. 
According to Godard and Hayes [59], this implies that a 
larger reference population would be required for Han-
woo cattle than for the above-mentioned breeds [54–58] 
to obtain a similar accuracy in genomic prediction.

Comparison of models
The parameter π is a fixed value in the BayesC method 
[19]. We analyzed a range of π values from 0.91 to 0.999 
to determine the most accurate π for the BayesC method 
for each trait. As shown in Fig. 1a, the realized accuracy 
for BT remained stable across a range of π values from 

Table 3  Variance components (standard error) estimated 
using pedigree and phenotypic data

BT backfat thickness, CW carcass weight, EMA eye muscle area, MS marbling 
score

σ 2
a , σ

2
e , σ

2
p , h

2: additive genetic variance, error variance, phenotypic variance and 
heritability, respectively

Trait (unit) σ 2
a σ 2

e σ 2
p h2

BT (mm) 5.57 (0.62) 5.75 (0.49) 11.32 (0.26) 0.49 (0.05)

CW (kg) 315.28 (46.76) 699.95 (40.51) 1015.23 (22.26) 0.31 (0.04)

EMA (cm2) 26.75 (3.27) 35.33 (2.67) 62.08 (1.42) 0.43 (0.05)

lnMS (Score) 0.08 (0.01) 0.05 (0.008) 0.13 (0.004) 0.61 (0.06)
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0.91 to 0.97, and then decreased for π values above 0.97. 
Similar patterns were observed for EMA and MS, with 
accuracies decreasing for π values above 0.97 and 0.91, 
respectively. In contrast, the accuracy of CW improved 
as π increased to reach a peak for a π value of 0.99 and 
then declined dramatically. Overall, the values of π for 
which the BayesC model provided the highest accuracy 
were 0.97 (BayesC97), 0.99 (BayesC99), 0.97 (BayesC97) 
and 0.91 (BayesC91) for BT, CW, EMA and MS traits, 
respectively (Fig. 1a). The lowest bias was obtained with 
π values of 0.95 for BT, 0.999 for CW, 0.95 for EMA, and 
0.91 for MS (Fig. 1b). Thus, for CW there was a conflict 
between accuracy and bias to determine the most suita-
ble π value. The highest accuracy and lowest bias for CW 
were obtained for π values of 0.99 and 0.999, respectively. 
Nevertheless, González-Recio et al. [60] showed that the 
MSE is a more flexible criterion than correlation and 
bias for comparing models because it takes both predic-
tion bias and variability into account. Due to the fact that 
MSE depends on the trait, we used the MSE ratio (ratio 
between MSE and MSE of BayesC91) to compare across 
traits and models. The lowest MSE ratio was achieved 
when π was set to 0.97, 0.99, 0.97, and 0.91 for BT, CW, 
EMA and MS, respectively (Fig. 1c).

A comparison of the accuracy and bias obtained for 
CW with the BayesC99, BayesL and GBLUP methods, 
revealed the superiority of the BayesC99 model (Fig. 2a); 
the accuracy of this model was higher than those of 
GBLUP (+0.071) and BayesL (+0.070) and the bias was 
lower than those of GBLUP (−0.02) and BayesL (−0.11) 
(Fig. 2b). For the other carcass traits (BT, EMA and MS), 
the accuracy and bias of BayesC99, BayesL and GBLUP 
methods were similar.

In terms of MSE, BayesC99 exhibited the best per-
formance (the lowest MSE) for CW, while for the other 
traits, the differences in MSE between the methods were 
trivial [see Additional file 2: Table S1].

The predictive performance of the models depended on 
the trait analyzed. The three methods performed simi-
larly for BT, EMA and MS traits, whereas for CW BayesC 
clearly outperformed GBLUP and BayesL. This indicates 
that the infinitesimal model holds for BT, EMA and MS 
but not completely for CW. In other words, BT, EMA 
and MS traits would be controlled by several genes, each 
with a small effect, whereas one or more individual genes 
would have a large effect on CW. These findings were 
confirmed by the single-marker method used for the 
GWAS analysis, which detected genome-wide significant 
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SNPs on chromosomes 6 and 14 for CW but not for MS, 
BT and EMA [see Additional file 3: Figure S2]. However, 
our results could be quite sensitive to the size of the ref-
erence population. Gao et al. [61] showed that by increas-
ing the number of animals in the reference population, 
the difference in accuracy between Bayesian and GBLUP 
approaches decreased. Therefore, the impact of the size 
of the training population on accuracy was also investi-
gated. As shown in Fig. 3, the accuracy of prediction for 
the traits and methods studied decreased as the size of 
the training population decreased, in agreement with the 
literature [32, 44, 59]. Nevertheless, the superiority of 
BayesC compared to GBLUP and BayesL was maintained 
in terms of accuracy regardless of the size of the training 
sample for CW but not for BT, EMA, and MS, regardless 
of the π value (Fig. 3).

Wolc et  al. [62] pointed out that mixture models (i.e. 
BayesB and BayesC) were clearly better than GBLUP for 
genomic prediction in the presence of QTL with a large 
effect, especially for small datasets and resulted in more 
accurate and persistent predictions. In our study, the 
accuracy of genomic prediction clearly differed between 
a Bayesian model (BayesC99) and GBLUP for CW with 
varying sizes of the training population as was also 
reported by [32].

Our results support a previous study on Hanwoo cat-
tle by Lee et  al. [7] that aimed at identifying major loci 

associated with several carcass traits (BT, CW, EMA and 
MS). They demonstrated that six highly significant SNPs 
on chromosome 14 were associated with CW, but no sig-
nificant SNPs were identified for the other carcass traits. 
Another GWAS on Japanese black beef cattle also detected 
three QTL that had a relatively large effect on CW [63]. 
Ogawa et al. [64] reported that MS is controlled by QTL 
that have only relatively small effects compared with 
the CW trait in Japanese black beef cattle. Other studies 
have also reported conflicting results. For example, Chen 
et al. [27] showed that GBLUP and the Bayesian methods 
were very similar in terms of accuracy for BT, CW, EMA 
and MS traits in Angus cattle and for CW, EMA and MS 
traits in Charolais cattle. They found that the BayesB95 
(π =  0.95) model performed more accurately (3%) than 
GBLUP for BT in Charolais, whereas in contrast, Rolf 
et al. [16] found that the accuracy of BayesB95 (π = 0.95) 
was 3.4% lower than that of RRBLUP for the same trait 
in multi-breed commercial beef cattle. They showed that 
RRBLUP was more accurate than BayesB for BT, CW and 
MS, whereas, for EMA, the accuracy of DGV was the 
same using either method. Júnior et al. [65] obtained simi-
lar results for BT, CW, and EMA in terms of accuracy and 
MSE using RRBLUP, BayesC and BayesL in Nellore cattle. 
These observations may also support the argument that 
the genetic architecture of these traits may differ among 
breeds because of different population histories. Saatchi 
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et al. [66] showed that one reason that explains the differ-
ences in the QTL identified among different populations 
could be that the genetic architecture that underlies trait 
variation varies among breeds.

Comparison between the traits analyzed
In spite of their high heritabilities, prediction accura-
cies for BT and MS were lower than those for CW and 
EMA (Table 3; Figs. 1a, 2a), which is consistent with the 
results of Onogi et  al. [50]. To investigate further the 
low prediction accuracy for BT and MS, genomic her-
itability (h2g) was estimated for each trait and with each 
method (Table  4). The proportion of genomic heritabil-
ity to pedigree-based heritability (h2g/h2) represents the 
proportion of genetic variance that was explained by the 
markers (σ 2

g /σ
2
a) [45]. Our results indicated that the esti-

mated genomic variance (σ 2
g ) was lower than the additive 

genetic variance σ 2
a  (Tables 3, 4) for all traits and with all 

methods except for CW using BayesC, which was slightly 

larger. However, given the large standard error obtained 
for σ 2

g  (72.12) and σ 2
a  (46.76), the differences between σ 2

a  
and σ 2

g  were not significant. Compared to CW and EMA, 
genomic heritabilities for BT and MS differed largely 
from pedigree-based heritabilities, regardless of the 
method (Table  4). With the GBLUP model, the propor-
tion of genetic variance captured by SNPs for BT and MS 
was equal to 65 and 66%, respectively. In other words, for 
BT and MS, 35 and 34% of the genetic variance was not 
explained by SNPs, while for EMA and CW, only 15% and 
just 5% of the additive genetic variance was unexplained.

This finding may explain the lower prediction accuracies 
obtained for BT and MS compared with EMA and CW, in 
spite of their higher heritability. In addition, it was expected 
that the DGV for MS would be more accurate than those 
for BT because MS had a higher heritability (Table 3), pos-
sibly because MS is a categorical trait. Kizilkaya et al. [67] 
showed that the accuracy of DGV for an ordinal categori-
cal trait was substantially lower than for a continuous trait 
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under the same conditions of heritability, effective and 
training population sizes, and number of categories.

The low genomic heritabilities achieved for BT and MS 
indicate that more animals (with genotypes and pheno-
types) are necessary to accurately estimate the effects of 
SNPs compared with CW and EMA. We also observed 
that the SNPs on the 50 K SNP chip could not capture all 
the genetic variability for those traits (BT and MS). There-
fore, a high-density SNP chip could be used to adequately 
assess LD and potentially capture a larger proportion of 
the additive genetic variance than the medium-density 
chip (i.e. 50,000 SNPs). In order to investigate the perfor-
mance of SNP density, 570,969 SNPs were imputed from 
the 50  K chip. Our findings indicate that the genomic 
variance σ 2

g  and (σ 2
g /σ

2
a) increased as the SNP density 

increased [see Additional file 4: Table S2]. The accuracy 
of DGV increased by 4% for BT and 12% for MS; how-
ever, for CW and EMA, the accuracy did not improve. 
Many studies using simulation and real data confirmed 
that the accuracy of genomic selection improves only 
slightly when a high-density SNP chip or whole-sequence 
data are used [34, 68–71].

In general, the realized accuracies of DGV for the 
four carcass traits, regardless of the method used, were 
low compared with results from other studies [16, 25, 
50]. One of the main reasons for the lower accuracies 
observed in our study could be due to the small training 

population size (N  ≈ 946) and the large effective popula-
tion size (Ne = 224) for the Hanwoo breed. Theoretical 
studies have shown that, to obtain the same accuracy, 
the number of animals needed in the reference popula-
tion increases with increasing effective population size 
[32, 59]. Using the K-means method, Saatchi et  al. [25] 
estimated DGV accuracies of 0.60, 0.47, 0.60 and 0.69 
for BT, CW, EMA and MS, respectively, using a train-
ing population of approximately 2200 Angus beef cat-
tle. Using a training population of about 2000 animals 
in multi-breed commercial beef cattle, Rolf et  al. [16] 
observed that the highest accuracies of DGV for BT, 
CW, EMA and MS were equal to 0.51, 0.78, 0.60 and 
0.76, respectively. Onogi et al. [50] reported a predicted 
ability (correlation between the DGV and the adjusted 
phenotypes) of 0.44, 0.42 and 0.39 for CW, EMA and 
MS, respectively. In our study, the genetic relationship 
between the validation and reference populations was 
close to zero. This is the most challenging scenario for 
genomic prediction because a large part of the accuracy 
of DGV results from genetic relationships captured by 
SNPs [72]. This could explain that our prediction accura-
cies were lower than those reported by Onogi et al. [50] 
for which the number of genotyped animals was larger 
and the effective population size was smaller [64] than in 
our study.

An alternative for improving prediction accuracy for 
Hanwoo cattle, with a deep pedigree, is to apply single-
step GBLUP (ssGBLUP) [73, 74]. In this method, accu-
racy is increased by using information from the pedigree 
and SNPs simultaneously [73]. However, as we have 
shown, GBLUP cannot be the best method for genomic 
prediction in the presence of QTL with a large effect 
such as the CW trait in our study. Thus, an alternative to 
increase the prediction accuracy for CW in single-step 
evaluation could be to use genomic relationship matrices 
weighted by marker realized variance as suggested by [75, 
76].

Comparison of realized and expected accuracy
As shown in Fig. 4, the observed accuracies were lower 
than the expected accuracies according to the formula 
derived by Daetwyler et  al. [32] when the approxima-
tion for Me (i.e. number of independent chromosome 
segments) was Me1 = 2NeL/ln(4Nel) [48] but greater 
than the expected accuracy when Me was Me2 = 2NeL 
[49]. Our results agree with those of Neves et  al. [77] 
who reported that expected accuracies based on Me1 
were higher than realized accuracies across traits; 
however, expected accuracies using Me2 were lower 
than realized accuracies in the case of within-family 
predictions.

Table 4  Genomic variance (σ 2
g), marker variance explained 

(σ 2
g /σ

2
a) and  genomic heritability (h2g) by  fully corrected 

phenotype and medium-density SNP

BT backfat thickness, CW carcass weight, EMA eye muscle area, MS marbling 
score
a  For BayesC, π values of 0.97, 0.99, 0.97 and 0.91 (the highest accuracy) were 
considered for BT, CW, EMA and MS, respectively
b  SE in Bayesian methods were estimated as the standard deviation of the 
posterior distribution

Trait (unit) Methoda
σ 2
g (SE)b σ 2

g /σ
2
a h2g = h2

σ 2
g

σ 2
a

BT (mm) BayesC2 3.71 (0.75) 0.67 0.33

BayesL 3.63 (0.75) 0.65 0.32

GBLUP 3.62 (0.73) 0.65 0.32

CW (kg) BayesC 330.73 (72.12) 1.05 0.33

BayesL 299.73 (72.96) 0.95 0.30

GBLUP 300.70 (69.013) 0.95 0.30

EMA (cm2) BayesC 23.19 (4.04) 0.87 0.37

BayesL 23.00 (4.16) 0.86 0.37

GBLUP 22.84 (4.14) 0.85 0.37

lnMS (Score) BayesC 0.055 (0.009) 0.69 0.42

BayesL 0.054 (0.009) 0.68 0.41

GBLUP 0.053 (0.009) 0.66 0.40
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Hayes et  al. [49] pointed out that Me1 does not take 
into account that the small segments may still contain as 
many mutations in the QTL as the larger segments. Thus, 
Hayes et  al. [49] recommended the use of Me2 = 2NeL, 
which is a compromise between the number of segments 
(4 NeL) and the number of segments weighted by length 
(2NeL/log(4NeL) per chromosome). However, Me2 is not 
an optimal approximation and based on our results as well 
as those of Neves et al. [76], it seems to underestimate the 
genomic prediction accuracy. However, the formula of 
Daetwyler et al. [32] assumes that all the genetic variance 
of the trait is explained by SNPs. Therefore, the formula is 
expected to overestimate prediction accuracy when SNPs 
cannot capture all the genetic variability. In our study, the 
genomic variance was smaller than the additive genetic var-
iance (see Table 4), especially for BT and MS. Consequently, 
this could explain the differences between expected (Me1) 
and realized accuracy for BT (0.21) and MS (0.25) and for 
EMA (0.13) and CW (0.06). This would indicate that when 
nearly all the total genetic variance is explained by the SNP 

array, the realized accuracies of GBLUP are closer to the 
expected values based on Me1 than on Me2.

Conclusions
The performance of the statistical methods used depended 
on the trait analyzed. The results showed a clear superior-
ity of BayesC compared with GBLUP and BayesL for CW, 
whereas for the other traits all methods performed similarly. 
The prediction accuracy of DGV for CW using BayesC was 
around 7% higher than that obtained with the GBLUP and 
BayesL methods. This indicates the importance of using a 
proper variable selection method for genomic selection of 
traits. In addition, the results also suggest that the genetic 
architecture underlying CW may differ from that underly-
ing the other carcass traits. This could be due to the fact that 
BT, EMA and MS seem to be controlled by several genes, 
each with a small effect, whereas for CW, there are probably 
several individual genes that each have a large effect. Over-
all, our results provide the first information for implement-
ing genomic prediction in Hanwoo beef cattle.
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