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Abstract

contents.

Background: Genotype by environment interactions are currently ignored in national genetic evaluations of dairy
cattle. However, this is often questioned, especially when environment or herd management is wide-ranging. The aim
of this study was to assess genotype by environment interactions for production traits (milk, protein, fat yields and fat
and protein contents) in French dairy cattle using an original approach to characterize the environments.

Methods: Genetic parameters of production traits were estimated for three breeds (Holstein, Normande and
Montbéliarde) using multiple-trait and reaction norm models. Variables derived from Herd Test Day profiles obtained
after a test day model evaluation were used to define herd environment.

Results: Multiple-trait and reaction norm models gave similar results. Genetic correlations were very close to unity for
all traits, except between some extreme environments. However, a relatively wide range of heritabilities by trait and
breed was found across environments. This was more the case for milk, protein and fat yields than for protein and fat

Conclusions: No real reranking of animals was observed across environments. However, a significant scale effect
exists: the more intensive the herd management for milk yield, the larger the heritability.

Background

Two main opportunities are available to improve produc-
tion traits in dairy cattle: through the modification of herd
management and/or the genetic level. Except when it is
necessary to choose a local breed for a specific environ-
ment (such as the Abondance breed in the French Alps),
these two opportunities are generally considered sepa-
rately, as in genetic evaluation. Indeed, they imply the
absence of genotype by environment (G*E) interactions,
i.e., the breeding value of an animal is assumed to be the
same regardless of the environment in which it will be
raised. Dealing with this situation, some breeders ques-
tion the efficiency of current breeding schemes for their
own particular management system. Thus, the objective
of this study was then to estimate G*E interactions for pro-
duction traits (milk, protein, fat yields and fat and protein
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contents) in French dairy cattle. The overall objective was
to assess whether these interactions could be an oppor-
tunity to better adapt animals to their environment. G*E
interaction studies raise three main questions: How to
define the genotype? How to describe the environment?
Which model to choose in order to estimate G*E interac-
tions? This study used an innovative description of herd
environment: Herd Test Day (HTD) profiles, which are by-
products of a test day model evaluation. Two models, a
multiple-trait and a reaction norm model were tested.

Methods

The approach consisted of two steps. The first step
dealt with the definition of herd environment through
HTD profiles. This was done across breeds (Holstein,
Normande and Montbéliarde) rather than within breed
because two herds with different breeds could share the
same type of environment. The second step was a G*E
interaction analysis. As genetic evaluations are within
breed, G*E parameters were estimated within breed.
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Description of the environment: Herd Test Day profiles
The methodology used to describe herd environment
from HTD profiles was described in [1]. The main dif-
ference with this previous study is that we worked here
with a larger dataset. A short description of the main steps
involved and results obtained follows.

Herd environments were described through HTD pro-
files for milk yield, fat and protein contents between 2005
and 2010. HTD profiles represent the evolution of HTD
effects over time, as HTD effects are obtained from a
test day model evaluation which aims at predicting the
breeding value of animals at any day of the lactation
period. The test day model uses each test day record
available in national databases, in contrast to the 305-
day lactation model which relies on the performance of
an animal cumulated over 305 days. In order to improve
the accuracy of daily breeding value estimation, other fac-
tors affecting the performance such as age and month
of calving, length of dry period and gestation are esti-
mated over the whole lactation through splines. Similarly,
genetic and permanent environment effects throughout
the lactation are predicted using continuous functions
and the detailed description of the French test day model
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is given in [2]. The HTD effect is independent from all
other effects and it estimates the effect of all features com-
mon to all cows of the herd on a particular test-day, i.e.,
essentially the effect of herd management (feeding, hous-
ing) of the test day. Therefore, the HTD effect can be
interpreted as the herd management level of a herd on
a given test-day. The HTD profile is a continuous func-
tion showing changes in HTD effects over time and can be
interpreted as the changes in the herd management level
over time. In previous studies, genetic evaluation using
a test day model was carried out for milk yield and for
fat and protein contents on French national data bases,
separately for Holstein, Normande and Montbéliarde, the
three major dairy breeds. This made it possible to describe
herds by their three HTD profiles (milk yield, protein and
fat contents) from 2005 to 2010 (see dashed curves in
Figure 1).

HTD profiles, reflecting changes in HTD effects over
time, can be decomposed into a systematic within year
change that will be assumed to reveal practices related
to the global herd management during the year as in
[3], and a deviation from this global component due
to specific characteristics (unusual weather conditions,
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Figure 1 Herd test profiles (figure extracted from [1]). This figure shows an example of a herd described by its three HTD profiles (for milk yield,
and protein and fat contents) before (dashed line) or after (solid line) smoothing.
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feedstuffs availability, etc.) that cannot be related to reg-
ular management activities. Therefore, HTD profiles had
to be corrected for these occasional features in order to be
used as the definition of the environment in a G*E interac-
tion study. For this purpose, HTD profiles were smoothed
to focus on their repeated annual features using a model
inspired by the model of Koivula et al [3] and described
in [1]. Basically, the method consisted of describing HTD
profiles by a continuous function involving a linear trend
and three sine curves. Examples of HTD profiles before
and after smoothing are shown in Figure 1. Note that in
the rest of the study, only herds for which smoothing was
obtained with a minimum coefficient of determination
were retained (see [1] for details).

Each HTD profile was then summarized by seven
descriptors, as shown in Figure 2, leading to 21 descrip-
tors (7 descriptors times 3 traits) for each herd. These
descriptors were reduced with Multiple Factor Analysis
(MFA) to 10 Principal Components (PC) by retaining all
PC that explained more than 4% of the total variance. MFA
is similar to principal components analysis, which enables
the joint use of categorical and quantitative data [4]. The
MFA was performed on data from 12 061 Holstein, 2 591
Normande and 1 104 Montbéliarde herds. The descrip-
tors were centered within breed in order to correct for
breed effects.
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The first principal component (PC1, explaining 15% of
the total variance) was interpreted as a measure of the spe-
cialisation of the herd management; it discriminated herds
with herd management favouring high milk production
(low PC1 score) from the herds favouring high fat content
(high PC1 score). The second PC (13%) was interpreted
as a measure of the intensity of production related to
herd management; it discriminated herds with high HTD
effects for milk yield, and for fat and protein contents
(high PC2 score) from herds with low HTD effects for milk
yield, fat and protein contents (low PC2 score). Principal
component 3 (8%) was interpreted as related to the sea-
sonality of herd management. It differentiated herds for
which the range of HTD profiles for the three traits was
small (high PC3 score) from those with large ranges (low
PC3 score), that is, PC3 discriminated herds in which herd
management led to more or less similar milk yield and
composition between seasons from herds in which herd
management led to variable milk yield and composition
across seasons. The next seven PC explained 46% of the
total variance but their interpretation was less intuitive. In
total, these 10 first PC explained 76% in HTD effects of the
total variance and were mainly related to the mean level
of HTD effects and the range of HTD profiles, rather than
to periods during which minimum and maximum HTD
effect were obtained.
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Figure 2 Descriptors of herd test day profiles (figure extracted from [1]). This figure shows the descriptors of smoothed HTD profiles used in
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Based on the MFA, herd environment was character-
ized by the 10 PC scores for 15 756 Holstein, Nor-
mande and Montbéliarde herds. These PC scores and
their interpretations were the basis of the different herd
environment definitions that were used to describe G*E
interactions.

Estimation of genotype by environment interactions

G*E interactions were estimated for the three breeds
based on data from two different sets of herds within
breed (“paragon” or “diversity’; see below) with two differ-
ent models (multiple-trait and reaction norm models). For
clarity, only analyses and results for the Normande and
Holstein breeds, which are respectively a national dual
purpose and an international dairy breed, are presented
here. The following paragraphs describe the methodology
used.

Herd selection for G*E estimation

Studies on the estimation of G*E interactions require
the estimation of genetic parameters, which was carried
out within breed (Holstein, Normande). A substantial
but not excessively large data set is required for this
purpose in order to obtain accurate estimates but limit
computation time. Among the 12 061 Holstein and 2
591 Normande available herds, herds used in the G*E
interaction study were selected by two strategies. Both
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were based on the PC scores of the herds. The first
strategy consisted in selecting only typical herds for
which characteristics were representative of a majority
of the French herds, leading to what will be referred
hereafter as the “paragon herd data set” (a paragon is
regarded as a perfect example of a particular feature).
The second strategy aimed at representing the complete
diversity of French herds, leading to the “diversity herd
data set”.

For the first strategy, three herd groups were created
using a clustering method based on the first 10 factors of
the MFA. Note that this was not a classification approach.
See [1] for more methodological details. At this stage, each
cluster included herds of the three breeds. However, since
the G*E analysis was carried out within breed, herd clus-
ters were then defined per breed. Practically, Normande
and Holstein herds of cluster 1 in the joint breed dataset
were respectively assigned to cluster 1 in the Normande
and Holstein datasets, and the same for clusters 2 and 3.
These herd clusters were also used as classes for the def-
inition of fixed effects in the reaction norm model. The
400 Normande and 750 Holstein herds that were most
representative herds of each cluster, i.e. those nearest to
the center of each cluster, were selected as paragons and
included in the “paragon dataset” They are represented
in pink, orange and red in Figures 3 and 4 for the Hol-
stein and Normande breeds, respectively. This strategy
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Figure 3 Diversity and paragon herds for the Holstein breed on the first factorial map. This figure shows how Holstein herds from the
diversity and paragon datasets were distributed over the first factorial map. Herds in pink, orange and red are the "paragon” herds and depict the

three herd clusters used in the multiple-trait model for the paragon dataset.
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Figure 4 Diversity and paragon herds for the Normande breed on the first factorial map. This figure shows how Normande herds from the
diversity and paragon datasets were distributed over the first factorial map. Herds in pink, orange and red are the "paragon” herds and depict the

was primarily used to obtain clearly distinct and well-
defined clusters for the G*E interaction estimation by a
multiple-trait model. Indeed, defining clusters of herds
along a continuum and then choosing the paragons in
each cluster forced some level of homogeneity within and
heterogeneity between clusters. This increased the power
to detect possible G*E interactions with the multiple-trait
model. The “paragon dataset” was also used with the reac-
tion norm models in order to compare both models on the
same dataset.

For the second strategy, the first factorial map (PC 1 and
2 of the MFA) was divided into 25 equal-sized cells. Up
to 40 or 60 herds (for the Holstein and Normande breeds,
respectively) were selected at random for each cell. This
led to two “diversity data sets” containing respectively 539
Holstein and 472 Normande herds (in blue in Figures 3
and 4, respectively).

Data selection for estimation of G*E interactions

The traits analysed were 305-day milk, fat and protein
yield, as well as 305-day fat and protein contents. Data
consisted of first lactations from cows which had a first
calving between 2000 and 2011. Records were edited on
several criteria: performances deviating by more than
three phenotypic standard deviations from the breed aver-
age, herds with less than 100 first lactations from 2000
to 2011, records from daughters of bulls with less than

three daughters that were located in just one herd were
deleted, as well as records from cows which had an age
at first calving lower than 23 months or greater than 40
months, or a lactation length lower than 180 days. These
steps reduced the size of the datasets. Tables 1, 2 and 3
show the final number of herds and records used to esti-
mate G*E interactions for the different models, breeds and
herd data sets.

Models

Two models to estimate G*E interactions were tested: a
multiple-trait model, in which the environment was con-
sidered to be specific to a group of herds, and a reaction
norm model, in which the environment varied continu-
ously as a function of PC scores of the herds. Both were
animal models from the perspective of fitting breeding
values. The pedigree files contained three generations (see
Tables 1, 2 for the multiple-trait model and Table 3 for
the reaction norm model). The only difference between
the two models was the modelling of breeding values
and additive genetic variance; fixed effects were the same
for the two models. All analyses were carried out using
the WOMBAT software [5], separately for each trait and
breed. A more detailed description of the two models
follows:

e Multiple-trait model
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Table 1 Characteristics of the Holstein paragon dataset for the multiple-trait model
Herd cluster Cc1 () a3
Number of herds 629 555 506
Data Number of records 99,862 79,104 67,774
Pedigree 412,732
PC 1 score:
herd management specialisation -0.88 (0.4) 036 (04) 0.38(0.5)
Environment milk yield vs protein and fat contents
descriptors PC 2 score: 0.06 (0.4) 0.69 (0.4) -0.79 (0.4)
herd management intensity
PC 3 score: 0.15(04) 0.05(0.5) -0.02 (0.5)

herd management seasonality

Milk yield (kg)

Fat yield (kg)
Phenotypes Protein yield (kg)
Fat content (%)

Protein content (%)

10,163 (1,550) 9,818 (1,553) 9,152 (1,449)

399 (60) 392 (62) 364 (59)

325 (49) 316 (50) 291 (47)
3.95(043) 4.01(042) 4.0(042)
3.20(0.20) 3.23(0.20) 3.19(0.20)

This table presents the number of herds, of first lactation records, of animals included in the pedigree file and the mean and standard deviation (between brackets) of
analysed traits and PC scores (only for the 3 first PC; herd clusters were created based on the first 10 PC) for each herd cluster and breed.

The multiple-trait across country evaluation (MACE)
[6] can be seen as a G*E analysis for which the envi-
ronment is country-specific. A given trait (e.g. milk
production) recorded in different countries is modelled as
distinct traits. Consequently, it is named a multiple-trait
model, although a single phenotype is analysed. Using
this model, genetic correlations can then be estimated
between countries/environments. The model used in this

paper mimics the model proposed in [7], in which the
environment is defined by herd clusters. It was applied
to the paragon datasets of each breed. Environments
were defined based on the three herd clusters identi-
fied in the first strategy of herd selection (basis of the
“paragons herd data set”). These are shown in pink, orange
and red in Figures 3 and 4 for the Holstein and Nor-
mande breeds, respectively. Tables 1 and 2 summarize

Table 2 Characteristics of the Normande paragon dataset for the multiple-trait model

Herd cluster cl c2 c3
Number of herds 291 287 218
Data Number of records 49,131 45352 30,982
Pedigree 197,039
PC 1 score:
herd management specialisation -0.70 (0.4) 0.36 (0.4) 0.21(0.4)
Environment milk yield vs protein and fat contents
descriptors PC 2 score: 0.08 (0.5) 0.75 (0.4) -0.75 (0.5)
herd management intensity
PC 3 score: -0.14 (0.5) -0.23 (0.5) -0.07 (0.6)
herd management seasonality
Milk yield (kg) 7,649 (1,219) 7,438 (1,230) 6,935 (1,162)
Fat yield (kg) 327 (54) 322 (55) 297 (52)
Phenotypes Protein yield (kg) 266 (43) 259 (44) 239 (41)
Fat content (%) 4.29(0.37) 4.34(0.36) 4.30(0.36)
Protein content (%) 348 (0.20) 3.49(0.20) 3.15(0.20)

This table presents the number of herds, of first lactation records, of animals included in the pedigree file and the mean and standard deviation (between brackets) of
analysed traits and PC scores (only for the 3 first PC; herd clusters were created based on the first 10 PC) for each herd cluster and breed.
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Table 3 Characteristics of the paragon and diversity datasets for the reaction norm model
Breed Holstein Normande
Dataset Paragons Diversity Paragons Diversity
Number of herds 1,690 539 796 472
Data Number of records 246,740 75173 125,465 70,105
Pedigree 412,732 133,310 197,039 112,276
PC1 score: herd management specialisation -0.13(0.7) -0.12(1.7) -0.10 (0.6) -0.07 (1.0)
Environment milk yield vs protein and fat contents
descriptors PC2 score: herd management intensity 0.03 (0.8) 0.08 (1.5) 0.12(0.7) 0.01(1.2)
PC3 score: herd management seasonality 0.07 (0.5) 0.10(0.8) -0.16 (0.5) -0.12 (0.8)
Milk yield (kg) 9,775 (1,577) 9,777 (1,863) 7,397 (1241) 7,294 (1,321)
Fat yield (kg) 387 (62) 386 (73) 318 (55) 314 (59)
Phenotypes Protein yield (kg) 313(51) 313 (60) 257 (44) 253 (48)
Fat content (%) 3.99 (0.43) 3.98 (0.45) 4.31(0.36) 4.32(037)
Protein content (%) 3.21(0.20) 3.20(0.20) 3.48(0.20) 346 (0.21)

This table displays the number of herds, of first lactation records, of animals used in the pedigree file and the mean and standard deviation (between brackets) of traits

and environmental descriptors.

the average performances for these three herd clusters in
the paragon dataset for the Hosltein and the Normande
breed respectively.

The multiple-trait model was:

Yy = HerdYear; + AgeYearCluster;
+MonthYearCluster; + aj. + eg;

where: Yj;, = 305-day first lactation performance of ani-
mal i in herd /4, HerdYear is the fixed effect of Herd-Year
class, AgeYearCluster is the fixed effect of Age at calving-
Year-herdCluster class, MonthYearCluster is a fixed effect
of Month at calving-Year-herdCluster subclass, a;. is the
random genetic effect of cow i in the herd cluster ¢, and e;
is the random residual effect. Note that genetic and resid-
ual variances were different for each herd cluster. This
model showed problems of convergence whatever the
Restricted Maximum Likelihood (REML) estimation algo-
rithm used (combinations of options Average Information
(AI), Parameter Expanded (PX) and Expectation Maximi-
sation (EM) of the WOMBAT software [5]). Some eigen-
values of the genetic variance/covariance matrix were
close to zero, because all genetic correlations estimated
between herd clusters were very close to one. Conse-
quently, the following single-trait model was implemented
instead:

Y, = HerdYear; + AgeYearCluster;
+MonthYearCluster; + a; + ecy;.

The trait is assumed to be the same genetic trait in each
cluster but the model allows for different genetic variances
by cluster. The same fixed effects were estimated as in the

previous model. Heterogeneous residual variance (e.y;) by
the combination of herd cluster and birth year period was
allowed for rather than only by herd cluster. Birth year
periods were based on years 2000 to 2002, 2003 to 2005,
2006 to 2008 and 2009 to 2011. Hence, four residual vari-
ances were obtained for each herd cluster; one for each
group of three birth years. The mean of these four vari-
ances was used as the overall residual variance of the herd
cluster. Finally, heritabilities for each herd cluster were cal-
culated as the ratio of the genetic variance to the sum of
the genetic and residual variances for that herd cluster.

e Reaction norm model

In reaction norm models, the additive genetic effect
is described as a continuous function of environmental
parameters. In this study, PC scores of herds were used
as environmental parameters. The reaction norm model
was applied both to the “paragon” and “diversity” herd
datasets. Table 3 summarizes average performances and
environment descriptors (PC scores) for both sets of herds
and breeds.

The model was :

Yy, = HerdYear; + AgeYearCluster;
+MonthYearCluster; + a; + e

with a; = ag; + 25'7:1 (aji * Pth).

The three herd clusters defined in the first herd selection
strategy were included as fixed effects subclasses, whereas
the breeding value of a cow was estimated as a function of
the PC scores of the cow’s own herd, rather than the PC
scores of the herd cluster. This study focused on random
genetic effects across environments for the estimation of
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G*E interactions and not on the fixed effects. Using exactly
the same fixed effects allowed comparison of estimates
of G*E interactions between the single-trait and reaction
norm models. Heterogeneous residual variances by group
of birth year period (2000 to 2002, 2003 to 2005, 2006 to
2008 and 2009 to 2011) were estimated. Animal breeding
values a; were modelled in two parts: one (ag;) express-
ing the animal’s average effect across environments and
one (Zle(aji * PCj,)) that depended on the PC scores of
the animal’s herd, i.e., on the environment. PCj, is the PC
score of herd /4 on the j axis of the factor analysis. aj; is
the coefficient applied for animal i on the /% PC score of
its herd. Note that linear reaction norms were assumed.
Analyses were carried out taking into account the first
one, two or three PC scores (p=1, 2 or 3). Within breed
and trait, these three models were compared using the
Bayesian Information Criterion (BIC). Only results from
the best model (the one with the smallest BIC value) will
be presented.

The estimated covariance matrix (V) of the reaction
norm model combined variances and covariances of the
random genetics effects ag, a1,..., a, of, for example, milk
yield:

2
O o (milk)

2
Oay (milk), a1 (milk) O 41 (milk)

2
Oag(milk), ap(milk)  Oay(milk), ap(milk) - - - Uap(mﬂk)
Genetic variances and covariances for each herd cluster

were obtained using the expression MVM’ with:

1 PClscore; PC2score; ... PCpscore;
M= : : : :
1 PClscore, PC2score;, ... PCpscore,

A row of matrix M represented one “state” of the envi-
ronment gradient, i.e. specific values of the environment,
described by p PC scores, with p depending on the model.
The number of environment states analysed were arbitrar-
ily chosen to be respectively 25 and 625 for models with
one or two PC, respectively, to describe the environment.
Four residual variances were estimated per breed and
trait; one for each of four birth year periods. The mean
of these four residual variances was used as the reference
residual variance. Finally, heritabilities for each state of the
environment were calculated as the ratio of the genetic
variance over the genetic plus residual variance for that
state of the environment. Genetic correlations between
two environment states were calculated as the ratio of the
genetic covariance between these two environments to
the product of their genetic standard deviations.
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Results

Multiple and single-trait analysis with the paragon dataset
Description of the three herd clusters/environments

With the multiple-trait model, environment was
described by three herd clusters which represented three
types of herd management. They were built based on the
first 10 PC scores, summarizing the features of their three
HTD profiles. Therefore, herd clusters were built based
on production level only due to herd management rather
than the global production level (that includes herd man-
agement but also genetic effect for example). Thus in the
following, the production level must be interpreted as the
level of milk yield and protein and fat contents due to herd
management only. The interpretation of herd clusters
was very similar for both breeds. Tables 1 and 2 show the
number of herds in each cluster and means of PC scores
in each herd cluster for each breed. Cluster 1 was made
up of herds with management that resulted in an aver-
age production intensity (mean PC2 score close to zero)
but that was more geared towards milk production than
towards protein and fat contents (negative PC1 score).
The management of the herds in this cluster was rather
insensitive to season of production for the Holstein breed
(mean PC3 score is positive) but not for the Normande
breed (mean PC3 score is negative). Cluster 2 consisted
of herds with a higher herd management intensity (high
PC2 score) and rather specialised in protein and fat con-
tents (positive PC1 score). Management of herds in this
cluster was affected by the season of production for the
Normande breed but not for the Holstein breed. Cluster
3 was composed of herds with a low herd management
intensity (negative PC2 score).

Genetic parameters in the three environments

In the multiple-trait model, which had problems of con-
vergence, the smallest genetic correlation was 0.98 for
protein content in the Normande breed between cluster
1 and cluster 3. This indicated that there was no rerank-
ing of animals across herd clusters, i.e., environments.
The single-trait model assumed that genetic correlations
were one between environments but allowed for heteroge-
neous genetic and residual variances, leading to different
heritabilities across herd clusters (Table 4).

Except for fat yield in the Normande breed and fat con-
tent in the Holstein breed, heritabilities decreased from
cluster 1 to cluster 3, for all traits and breeds: heritabil-
ities were greater for herds with a high herd manage-
ment intensity that favoured milk production. The largest
ranges of heritabilities were found in the Holstein breed
(Table 4): with a decrease in heritability from herd cluster
1 to herd cluster 3 by 15% for milk yield, 15% for pro-
tein yield, 22% for fat yield. In most cases, these decreases
in heritability were due to a greater decrease of genetic
variance than of residual variance.
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Table 4 Residual variance, genetic variance and heritabilities for the three herd clusters with the single-trait model

Holstein Normande
Trait C1 c2 c3 C1 c2 c3
gen var 835,690 802,710 590,920 519,830 473,220 420,700
(17,204) (18,570) (15,387) (15,473) (15,302) (15,638)
Milk yield res var 952,294 970,338 887,510 636,713 643,032 586,439
h? 047 045 040 045 042 042
gen var 12325 1193.7 939.62 822 821 744
(26) 29 (25) @7) 29 (28)
Fat yield res var 1507 1605 1443 1260 1284 1141
h? 045 043 0.39 0.39 0.39 0.39
gen var 608 580 416 513 472 428
(15) (16) (13) (17) (17) (17)
Protein yield res var 967 1013 896 757 771 685
h? 0.39 0.36 032 0.40 0.38 0.38
gen var 15.5 154 15.0 84 84 7.8
(0.18) (0.20) (0.21) (0.16) 0.17) (0.19)
Fat content res var 39 4.2 42 36 39 39
h? 0.80 0.78 0.78 0.70 0.69 0.67
gen var 26 25 2.5 2.5 25 24
(0.038) (0.041) (0.042) (0.051) (0.052) (0.061)
Protein content res var 1.3 14 14 12 1.3 13
h? 0.67 0.64 0.64 0.67 0.66 0.64

Variances (with standard errors between brackets) and heritabilities are presented for each trait by breed and herd cluster (C1, C2, C3).

In conclusion, the multiple-trait model did not reveal
evidence of significant reranking of animals between envi-
ronments. However, although herd clusters in the paragon
dataset did not reflect extreme herd managements, heri-
tabilities were found to differ between environments.

Reaction norm model

Reaction norm models were tested using one, two or three
PC as environmental parameter(s) within breed, trait and
dataset (paragon or diversity herd sets). According to the
Bayesian Information Criterion, the best model used only
PC1 as environmental parameter (i.e., herd management
specialisation: milk yield versus protein and fat contents)
for protein and fat contents, whereas the best models for
milk, protein and fat yields used both PC1 and PC2 (herd
management specialisation and herd management inten-
sity) as environmental parameters. This was the case for
all breeds and both datasets.

The first eigenvalue of the covariance matrix (V) that
combined variances and covariances of the random genet-
ics effects ag, a1,..., 4, (where p=1,2,3 is the number of
PC included as environmental parameters) was very high
whatever the breed, trait and dataset. This eigenvalue cor-
responded mainly to the random genetic effect ag, which

represents the part of the breeding value that does not
depend on the environment. This eigenvalue represented
a minimum of 99% of the sum of eigenvalues of the covari-
ance matrix (V). This was a further argument support-
ing the quasi absence of G*E interactions for production
traits, in terms of reranking.

Estimates of residual variances are shown in Table 5 and
genetic correlations and heritabilities in Tables 6 and 7.
Note that for these results, only environment states corre-
sponding to herds in the dataset were taken into account.
Indeed, Figures 3 and 4 show that some areas defined by
PC1 and PC2 included no herds (e.g. in the top left corner
of the figures). On average, genetic correlations between

Table 5 Residual variances with the reaction norm model

Holstein Normande
Trait Paragon Diversity Paragon Diversity
Milk yield 931,367 945,995 623,825 620,922
Fat yield 1,506 1,531 1,233 1,207
Protein yield 948 940 740 723
Fat content 412 4.63 374 375
Protein content 1.33 1.35 1.27 1.29
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Table 6 Genetic correlations between environments with the reaction norm model

Holstein Normande
Paragon Diversity Paragon Diversity
Trait Model Min Mean Max Min Mean Max Min Mean Max Min Mean Max
Milk yield RN 0.96 0.99 1 0.68 0.97 1 0.99 0.99 1 0.92 0.99 1
Fatyield RN, 0.97 0.99 1 0.60 0.96 1 0.99 0.99 1 0.89 0.99 1
Protein yield RN, 0.93 0.99 1 0.64 0.96 1 0.99 0.99 1 0.86 0.99 1
Fat content RN 0.99 0.99 1 0.94 0.99 1 0.98 0.99 1 0.99 0.99 1
Protein content RN4 0.99 0.99 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 1

Minimum, mean and maximum estimates of genetic correlations between environments are given for each trait by breed and dataset.

environments were very high for all breeds, traits, and
datasets (see Table 6), supporting again the absence of
reranking of animals across environments. Genetic corre-
lations were higher between environments defined for the
paragon dataset than between environments defined for
the diversity dataset. This was because herds included in
the paragon dataset were chosen to reflect herd manage-
ments that were common in France. In contrast, the diver-
sity dataset also included herds that represented extreme
environments. In the diversity dataset, the average genetic
correlations were lower for the Holstein than for the Nor-
mande breed. This is due to the fact that the Normande
herds available in the study reflected herd managements
less extreme than the Holstein herds: the range of their
PC scores was narrower than the one for Holstein herds
(see Figures 3 and 4). The lowest genetic correlations
were obtained with the diversity dataset for milk, fat
and protein yields: between 0.60 and 0.68 for the Hol-
stein breed and between 0.86 and 0.92 for the Normande
breed. These correlations were obtained between extreme
environments.

Although no reranking was shown, heterogeneity of her-
itabilities was again found for milk, fat and protein yields
for both breeds (Table 7), demonstrating a scale effect.
Since the residual variance was the same across environ-
ments within breed, trait and dataset, this was due to a
heterogeneity of genetic variances across environments.
In contrast, heritabilities for protein and fat contents were

more homogeneous across environments. Similar to what
was observed for genetic correlations, the range of her-
itabilities was higher in the diversity dataset than in the
paragon dataset and was even higher for the Holstein
breed than for the Normande breed.

For the yield traits, environment was described simul-
taneously by two environmental parameters (PC1 and
PC2 scores). The shape of heritabilities across environ-
ments was the same for all breeds and datasets for milk,
protein and fat yields. Figures 5 and 6 show estimates
of heritability for milk and fat yield, respectively, for
the Holstein breed as functions of the PC1 and PC2
herd scores using the “diversity” dataset. Heritabilities
increased with increasing PC1 and PC2 herd scores. This
gradient was more important for herd management inten-
sity (PC2) than for herd management specialisation (milk
yield versus fat and protein contents, PC1).

For clarity, only analyses and results for the Normande
and Holstein breeds were presented. However, estimates
of G*E interactions in the Montbéliarde breed led to
exactly the same conclusions with multiple-trait, single-
trait and reaction norm models (results not shown).

Discussion

The aim of this study was to estimate G*E interac-
tions for production traits in the Holstein and Normande
breeds in France. Genetic correlations between envi-
ronments were very close to unity, except between

Table 7 Heritabilities across environments with the reaction norm model

Holstein Normande
Dataset Paragon Diversity Paragon Diversity
Trait Model Min Mean Max Min Mean Max Min Mean Max Min Mean Max
Milk yield RN> 0.26 043 0.55 0.12 042 0.66 0.28 043 0.52 0.17 0.40 0.53
Fat yield RN 0.28 042 0.52 0.15 040 0.63 0.27 039 047 0.14 037 0.50
Protein yield RN 0.80 035 049 0.07 0.36 0.64 0.24 0.39 048 0.12 0.36 0.52
Fat content RN 0.79 0.79 0.79 0.76 0.76 0.77 0.67 0.69 0.70 0.68 0.69 0.71
Protein content RN; 0.65 0.66 0.67 0.63 0.64 0.66 0.65 0.66 0.67 0.64 0.65 0.66

Minimum, mean and maximum of heritabilities across environments are given for each production trait by breed and dataset.
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Figure 5 Heritabilities for milk yield in the Holstein breed based on the reaction norm model. This figure shows heritabilities of milk yield
calculated from the reaction norm model applied on the Holstein diversity dataset.
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very extreme environments for all breeds, models, and
datasets, demonstrating that reranking of animals for
production traits across environments does not exist in
France. Such a result was previously reported in stud-
ies in France that used herd production level as defini-
tion of herd environment [8] as well as in other studies
[9-11] that used different definitions of the environment.
Yet, other studies did report genetic correlations less than
one between environments, i.e., with reranking of animals.
These studies dealt with data from different countries [12-
15], that is, for ranges of environments that were greater
than in this national study.

Variable genetic variances across environments for pro-
duction traits were found in this study and have been
reported before [9,16]. Genetic variances increased with
the capacity of the herd management to promote milk
production. These results are in agreement with [8,9,17],
in which genetic variances increased with increasing pro-
duction level.

In a G*E interaction study, the definition of the herd
environment is crucial. Definitions used in the literature
are extremely diverse; they depend on the scale of the
study (experimental farm versus national or international
studies) and on the traits analysed. In the case of pro-
duction traits, definition of the herd environment can be
based on specific features of the feeding system, such as
the level of concentrate in the diet [18,19], grazing severity
and silage quality [20], features of the reproduction sys-
tem, such as the calving system (seasonal or uniform) [11],
features of the herd structure, such as herd size [11], fea-
tures of the climate such, as temperature humidity index
[16], rainfall [7], or features of genetic background (per-
cent of Holstein genes) [7]. Many studies have described
the environment based on observed performances of the
animals, such as herd milk production level [8,21], fat
and protein yields [22], peak milk yield, or persistency
[23]. In these cases, environmental and genetic factors are
combined. In this study, herd environment was described
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Figure 6 Heritabilities for protein yield in the Holstein breed based on reaction norm model. This figure shows heritabilities of protein yield
estimated from the reaction norm model applied to the Holstein diversity dataset.

based on HTD profiles. This definition focuses on the
part of the production due to herd management only. This
improves the study of G*E interactions because environ-
mental and genetic factors are no longer confounded in
the definition of the environment. Moreover, HTD pro-
files are available from national databases and do not
require extra recording, in contrast to many herd man-
agement descriptors. Using HTD profiles allows analysis
of large datasets. Finally, HTD profiles summarize all
impacts of environment on production and offer a general
overview of the environment, whereas some other herd
management descriptors reduce environment to a limited
number of features (temperature, average performances,
herd size).

Summarizing HTD profiles descriptors by first PC
scores allowed correlations between the 21 descriptors to
be taken into account and a focus on the main causes
of variability among HTD profiles. However, by limiting

the analysis to the first PC scores, part of the diversity
of HTD profiles that reflect differences in herd manage-
ment (i.e., environment diversity) was not accounted for,
regardless of the model used (multiple-trait, single-trait or
reaction norm model). In fact, the three herd clusters used
to describe the environment in the multiple-trait model
were built based on the first 10 PC scores only, which
explained about 76% of the total variance in HTD pro-
files. Moreover, we selected paragon herds for each cluster,
which reduced the within-environment diversity. For the
reaction norm models, the environment was described
only through one or two PC scores. This may seem reduc-
tive but reaction norm models based on three PC scores
gave poorer goodness of fit in terms of the BIC.

The models that were used to estimate G*E interactions
were animal models with pedigree information over three
generations, in contrast with other studies that used sim-
pler models such as sire models [13,16] or sire-maternal
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grand sire models [17]. Two types of models were tested:
multiple-trait and reaction norm models. A drawback of
multiple-trait models is that they require classification of
environments, which cannot represent the full diversity
of environments. Moreover, in this study, the multiple-
trait model was applied to the “paragon” dataset, in which
extreme environments were not represented, which led
to a reduction in environmental variance. Despite this
reduced diversity of environments, a clear heterogene-
ity of heritabilities among the three herd clusters was
identified. In contrast, reaction norms model an “infinite”
number of environments, which more precisely depicts
the existing continuum of the environment. Generally,
the parameter that describes the environment in reaction
norm models is a single measure such as age at calv-
ing, herd size [24], or herd-year averages of protein yield
[25]. This environment parameter can also be a synthetic
variable that summarizes information of several environ-
mental variables. In [17], 65 environmental variables were
reduced into four PC by a factor analysis and were used
separately. Hence, one major improvement in the current
study was that several PC were used simultaneously to
describe the environment. The number of parameters to
estimate in the model was limited by using linear reaction
norms rather than more sophisticated functions such as
polynomials. The next step will be to study the possibil-
ity to simultaneously account for a larger number of PC
to describe the environment. In particular, a reduced rank
genetic matrix could be used to summarize the effect of
several PC on the genetic effect. Reaction norm models
applied to the diversity dataset allowed the investigation
of extreme environments (for one or two PC). Here, an
average residual variance which did not depend on the
environment was used to estimate heritabilities with the
reaction norm model. Consequently, differences of heri-
tabilities across environments were only due to differences
in genetic variances, which may have exacerbated dif-
ferences in heritabilities between environments. These
differences of heritabilities across environments might be
exacerbated by the use of linear reaction norms and of an
average residual variance. Thus, the reaction norm model
could be improved by allowing different residual variances
across environments.

No reranking of animals was shown for production
traits. These traits have been selected for a long time, and
thus, animals may be well adapted to all herd manage-
ments that currently exist in France. Nevertheless, within
the context of the development of a sustainable agricul-
ture, new ecological constraints appear such as controlling
the use of phytosanitary products or protecting some agri-
cultural areas. Also, new economical constraints due to
reorganization of agricultural areas, with a decrease in
the number of farmers or the end of quotas and liberal-
isation of milk production could raise new types of herd
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managements. Depending on how breeders react to these
constraints, the range of environments could get larger.
Thus, G*E interaction studies will have to be updated in
order to assess whether animals remain well adapted to all
herd environments.

Greater G*E interactions might exist for more recently
selected traits. For these traits, the processes may not have
already removed the animals’ capacity to be specifically
adapted to a particular environment. Thus, on a follow-up
study, we will investigate G*E interactions on functional
traits.

Conclusions

Presence of G*E interactions was evaluated for produc-
tion traits (milk, protein and fat yields, protein and fat
contents) using multiple-trait (which was eventually con-
verted to a single-trait model) and reaction norm animal
models for the Holstein, Normande and Montbéliarde
breeds, and using herd environment descriptors derived
from HTD profiles. No reranking of animals between
environments was found for any breed or model. There-
fore, it can be concluded that existing breeding schemes
are efficient regardless of the environment in which ani-
mals are raised and produce. However, a heterogeneity
of heritabilities across environments was apparent. In
most cases: the more intensive the herd management for
milk yield, the larger the heritability. Ignoring this het-
erogeneity makes reliabilities of estimated breeding values
inaccurate. Moreover, the heritability and the genetic vari-
ance gradients across environments could entail a higher
genetic response in the most intensive herd managements.
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