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Abstract

Background: In classical pedigree-based analysis, additive genetic variance is estimated from between-family
variation, which requires the existence of larger phenotyped and pedigreed populations involving numerous
families (parents). However, estimation is often complicated by confounding of genetic and environmental family
effects, with the latter typically occurring among full-sibs. For this reason, genetic variance is often inferred based
on covariance among more distant relatives, which reduces the power of the analysis. This simulation study shows
that genome-wide identity-by-descent sharing among close relatives can be used to quantify additive genetic
variance solely from within-family variation using data on extremely small family samples.

Methods: Identity-by-descent relationships among full-sibs were simulated assuming a genome size similar to that
of humans (effective number of loci ~80). Genetic variance was estimated from phenotypic data assuming that
genomic identity-by-descent relationships could be accurately re-created using information from genome-wide
markers. The results were compared with standard pedigree-based genetic analysis.

Results: For a polygenic trait and a given number of phenotypes, the most accurate estimates of genetic variance
were based on data from a single large full-sib family only. Compared with classical pedigree-based analysis, the
proposed method is more robust to selection among parents and for confounding of environmental and genetic
effects. Furthermore, in some cases, satisfactory results can be achieved even with less ideal data structures, i.e., for
selectively genotyped data and for traits for which the genetic variance is largely under the control of a few major
genes.

Conclusions: Estimation of genetic variance using genomic identity-by-descent relationships is especially useful for
studies aiming at estimating additive genetic variance of highly fecund species, using data from small populations
with limited pedigree information and/or few available parents, i.e., parents originating from non-pedigreed or
even wild populations.

Background
Estimates of additive genetic variance are commonly
based on data from large pedigreed populations incorpor-
ating all known relationship information. Additive
genetic relationships can be defined as twice the identity-
by-descent (IBD) probability of two randomly drawn
alleles, which can be estimated from pedigree data. The
advantages of these pedigree-based analyses are that they
do not require any knowledge about the genetic architec-
ture of the traits and that the additive relationships are
easily inferred from a known pedigree. However, these
methods also have some major limitations. First, such

analyses ignore relationships beyond those included in
the known pedigree. Second, the assumed relationships
are expected relationships (based on expected sharing of
IBD alleles) rather than actual relationships. In fact, the
pedigree relationship is exact only under an infinitesimal
model [1], i.e., assuming that the additive genetic effects
of the quantitative traits are controlled by an infinite
number of unlinked loci. Under a more realistic finite-
locus model (and assuming that some of the loci are
linked), the actual relationships will be distributed
around the expectation, with variable relationships
among full-sibs and other relatives [2]. By assuming
(incorrectly) homogeneous relationships among the same
type of relatives (e.g., sibs), in pedigree-based analyses,
the genetic (co)variance components are estimated based
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on between-family variation only, since the Mendelian
sampling deviations of non-parents cannot be separated
from the residual (or permanent environmental) effects
on the same animals [3]. Estimation of genetic variance
based on pedigree relationships is further complicated by
the fact that common environmental effects may be
important for some relatives, especially full-sibs (e.g.,
maternal environment, rearing environment, litter effects,
etc.), which means that the genetic variance must be esti-
mated from covariances among phenotypes of more dis-
tant relatives (e.g., half sibs, cousins, etc.).
Due to linkage between loci within the same chromo-

some, parents tend to pass on long segments of DNA to
their offspring. Hence, the “effective” number of segregat-
ing loci within a full-sib family will be much lower than
the corresponding number for the whole population,
even for species with a larger genome. For example,
recent reports have indicated that the effective number of
segregating loci among full-sib pairs in humans is only
about 80 [4,5]. When the effective number of segregating
loci is low, the actual relationships among full-sibs vary
substantially among sib-pairs. Visscher et al. [5] have esti-
mated that actual relationships among human full-sibs
vary from 0.37 to 0.62, and used these relationships to
quantify the additive genetic variation of human height
based on within-family segregation only, i.e., free from
non-genetic factors. In this study, the heritability values
were based on more than 3000 sib pairs. With such a
large dataset, including numerous families, the main
challenge is not to estimate between-family variation, but
rather to separate genetic effects from other effects that
act on a family level. Visscher et al. [5] pointed out that
one limitation of their method was that it required large
datasets with densely genotyped individuals. Indeed, for a
sib-pair design (twin study), a large number of full-sib
pairs would be needed. However, for livestock, aquacul-
ture species and laboratory animals, population struc-
tures are usually very different from those in humans,
with much larger progeny groups of either full- or half
sibs (or both). Therefore, the aim of the current study
was to test whether genetic variance could be accurately
estimated with relatively small datasets and a limited
number of families, using a population structure typical
of a high fecundity species (e.g., insects, crustaceans, fish
or poultry), and whether the results could also be gener-
alized to species in which only one of the sexes (usually
males) has a large reproductive potential (e.g., mamma-
lian livestock).

Methods
Simulation study
Genomic identity-by-descent relationships
The IBD relationships were simulated so that they clo-
sely resembled the relationships estimated with real data

for humans, and thus they were typical of species with
relatively large genomes. Variation in IBD sharing was
simulated using a model with 80 “effective loci” (ne)
within a family (equivalent to human genome size).
Effective loci are defined as the number of indepen-
dently segregating “loci” that would yield the same stan-
dard deviation of the proportion of genome shared
among full-sibs as observed in real genomic data from
human sib pairs [4]. Hence, an “effective locus allele” is
not a specific mutation, but is equivalent to a long hap-
lotype block passed on from parent to offspring. For
simplicity, it was assumed that different families were
unrelated and that inbreeding was zero. For an “effective
locus” i, the IBD relationship of two full-sibs was there-
fore defined as 0 if none of the paternal and maternal
“alleles” (haplotype blocks) were IBD, 0.5 if either their
paternal or maternal “alleles” were IBD and 1 if both
their paternal and maternal “alleles” were IBD. The
actual relationship between two full-sibs was then
defined as the average relationship across all “effective
loci” (i.e., representing the whole genome). An example
of the distribution of actual relationships in a large
simulated full-sib family is shown in Figure 1. Since all
relationships among full-sibs are based on the inheri-
tance of a limited number of “effective loci” (ne = 80),
the actual relationship matrix cannot be of full rank for
large size families, which introduces numerical problems
in data simulation and analysis. Therefore, the relation-
ship matrix was forced to be positive definite by adding
a small positive value (10-3) to each diagonal element
(sufficiently small to have a neglible effect on the genetic
(co)variance structure).
Data sets and data structures
Nine data structures were generated, using various num-
bers of full-sib families (1-10) and individuals (200-1000)
with data (Table 1). Furthermore, three scenarios were
defined (Table 2), all assuming moderate heritability,
but differing with respect to the distribution of genetic

Figure 1 Example of actual relationships among simulated full-
sibs in a single family (N = 1000).
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variance; either equally distributed over genomic regions
(Scenarios 1 and 2) or located in a single region (“one
effective locus”) only (Scenario 3). Furthermore, Sce-
nario 1 included common environmental family effects
in addition to additive genetic effects, while Scenarios 2
and 3 assumed that common environmental effects were
absent.
All combinations of structures and scenarios were run

in 50 replicates and the results were averaged over repli-
cates. However, for single-family structures, in which all
animals are necessarily within the same family environ-
ment, there was no practical difference between Scenar-
ios 1 and 2 (the environmental family effect will be
included in the overall mean). Hence, 1200 different
datasets were generated and analyzed.
Phenotypes were generated using the following model:

y = 1μ + zaa + zff + e (1)

where μ is the overall mean, a ∼ N
(
0, Gσ 2

a

)
, f ∼ N

(
0, Iσ 2

f

)
, e ∼ N

(
0, Iσ 2

e

)
,

G is the actual IBD relationship matrix, I is an identity
matrix of appropriate size, the Z-matrices are appropriate

incidence matrices and σ 2
a , σ 2

f and σ 2
e are the additive

genetic, common environmental and residual variances,
respectively. For Scenarios 1 and 2, G was set up over all
“effective loci”, while for Scenario 3, only the first “effective
locus” was used to calculate G. The breeding values in a
were then generated as:

a = Lz (2)

where L is a lower triangular Cholesky decomposition
of G, and z is a vector of standard normal deviates of
length N (number of animals in the dataset). This
assumes that (1) genetic variance is evenly distributed
across the genome, and (2) gene effects are normally
distributed, or that the aggregated effect of many genes,
i.e., the breeding values, are approximately normally dis-
tributed, even when individual gene effects are not (due
to the central limit theorem). It is also assumes that the
different founder alleles at an “effective locus” have
unique allelic effects, because an “effective locus” con-
tains many genes and thus contains a unique combina-
tion of alleles at these genes. All datasets were
generated using the MATLAB® software http://www.
mathworks.com.
Statistic alanalysis
The data sets were analyzed with the general linear
model

y = Xβ + Zaa + e

where Xb includes fixed effects of each family, or in
absence of common environmental family effects, the
overall mean only. If fitted, common environmental
family effects were included as fixed effects due to the
fact that the number of families included was very small
(and the number of observations per family large) and
thus the associated variance was difficult to estimate.
Model 1: Genomic IBD animal model In this model,
the additive genetic effects were assumed:

a ∼ N
(
0, Gσ 2

a

)
, where G was calculated over all

genomic regions, i.e. it was assumed that the inheri-
tance of the DNA segments from parents to offspring
could be accurately traced using marker information,
and genetic variance was evenly distributed over gen-
ome segments (irrespective of the simulation scenario).
The genomic IBD animal model is equivalent to a gen-
ome-wide gametic model, i.e., a model in which the
original gametes received from the sire and dam and
their associated actual relationships are reconstructed
using genomic data [6]. The relationship between two
individuals in the animal model is twice the average of
the four gametic relationships (coancestry) for the two
individuals, and the animal genetic variance is twice
the gametic variance.
Model 2: Pedigree-based animal model This is the
classical animal model, assuming a ∼ N

(
0, Aσ 2

a

)
,

where A is the numerator relationship matrix (inferred
from the pedigree). Furthermore, since the classical
model uses only between-family variation to estimate
additive genetic effect variance, environmental effects
common to full-sibs could not be included in the model
for this simple data structure (irrespective of whether
they were present or not).

Table 1 Simulated data structures

Structure Animals Full-sib families Animals per family

1 200 1 200

2 200 5 40

3 200 10 20

4 500 1 500

5 500 5 100

6 500 10 50

7 1000 1 1000

8 1000 5 200

9 1000 10 100

Table 2 Input variance components

Scenario Additive
genetic

Common
environment

Residual Heritability*

1 0.50 0.25 1.00 0.33

2 0.50 0.00 1.00 0.33

3 0.50† 0.00 1.00 0.33

*heritability was calculated as genetic variance/(genetic variance + residual
variance);
†all genetic variance was located at one of the “effective loci”
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For both models, variance components were estimated
with restricted maximum likelihood methodology using
the ASREML software package [7].
Selective genotyping The genomic IBD model assumes
that all animals are genotyped with a sufficiently dense
marker map covering the entire genome. However, in
some studies, selective genotyping of phenotypically
extreme (high/low) animals within each family may be
used to save costs. This may be a useful approach for QTL
(Quantitative Trait Loci) detection, but our aim was to
evaluate whether such data could be used to estimate
quantitative genetic variation as well. In these analyses, we
assumed a single family with 200, 500 or 1000 full-sibs,
and for which only individuals with phenotypes deviating
more than one residual standard deviation from the mean
were genotyped. However, because including only the gen-
otyped (phenotypically extreme) animals in the analysis
would probably yield overestimated variance components,
the non-genotyped animals were also included in the ana-
lysis. For the analyses, genomic IBD relationships among
genotyped individuals were combined with pedigree rela-
tionships of non-genotyped individuals in a common rela-
tionship matrix [8,9].

Results
The estimated heritabilities (across-replicate means and
standard deviations) for the different structures under
Scenarios 1 and 2 are presented in Figures 2 and 3,
respectively. For the classical pedigree-based analyses, the
data structure did not make it possible to separate per-
manent environmental effects common to full-sibs from
genetic effects, since both factors are estimated from
between-family variation only (and no other relatives
than full-sibs were present). Hence, the estimated herit-
ability in the classical model was biased by the common
environmental component, resulting generally in over-
estimated genetic variance. Furthermore, when the num-
ber of families included in the dataset was low, the
estimates also varied substantially from replicate to repli-
cate. For the one-family designs, no between-family
variation existed, and therefore, by definition, genetic
variance could not be estimated with a classical pedigree-
based model. However, for all the designs, the genomic
IBD model was able to estimate genetic variance, due to
the fact that the model inferred genetic variance from
within-family variation, and multiple families were there-
fore not needed. Moreover, even with multiple families,
the heritability estimates were unbiased and much more
accurate than with the classical model. Furthermore,
precision of the heritability estimate in the IBD model
increased with increasing family sizes and were most pre-
cise for single-family designs (i.e., largest family size for a
given number of observations). For the latter design,

heritabilities were estimated with moderate to high preci-
sion even with the smallest datasets (200 animals).
When assuming no common environmental variance

(Scenario 2), the pedigree-based analyses were also
unbiased but they were less precise than the genomic IBD
analyses (Figure 3). As expected, if common environmen-
tal effects were not included in the data, the precision of
the estimated heritability was improved, in particular for
the smallest datasets using the classical model, while the
precision of the IBD model was unaffected for the largest
datasets (1000 individuals). The differences between the
two models were most pronounced with larger datasets
with a few families. For the IBD genomic model, within-
family variation dominated estimation of genetic variance,
and thus reducing family sizes to give room for more
families led to more imprecise estimates of genetic
variance.
For selectively genotyped data, the genomic IBD model

was also able to estimate the genetic variance based on a
single large (N = 1000) family. However, single-family esti-
mates based on smaller samples (200 or 500) tended to be
overestimated, and the precision of the estimates were
reduced compared to that with full genotyping (Figure 4).
If all the genetic variance was located in only one “effec-

tive locus”, and no common environmental variance
existed (Scenario 3), estimation of heritability was still
unbiased for both the genomic IBD and the pedigree-
based (more than one family) methods (Figure 5). With
larger datasets (500-1000 individuals), the genomic IBD
method was more precise, but the two methods were
equally imprecise for the smallest datasets, and, in contrast
with the earlier results, the single-family design yielded
highly imprecise results with the genomic IBD model.

Discussion
This study shows that tracing genomic IBD relationships
using genomic information has clear advantages, not only
for prediction of individual breeding values [10] but also
for estimation of genetic (co)variance components. Both
the current and earlier studies have shown that genetic
variance can be estimated based on within-family varia-
tion. In contrast, estimation of genetic variance in a classi-
cal genetic analysis is based only on between-family
variation. Hence, for the latter, it is imperative that genetic
and non-genetic family effects are properly separated by
the model, which puts major limitations on the usefulness
of family data, e.g., resemblance among full-sibs may also
be due to similarities in the environment. Furthermore, for
an accurate estimation of genetic variance in a classical
model, many families must be included in the study and
selection of data should be avoided. However, by using
actual IBD sharing among sibs instead of expected rela-
tionships, genetic variation can be quantified solely from
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within-family variation [5], which also facilitates proper
separation of genetic and non-genetic family effects (as the
latter do not affect within-family variation). The current

study shows that with the genomic IBD approach, genetic
variance can be accurately inferred from a single family,
and for a given number of observations, including more

Figure 2 Across-replicate averages of estimated heritability (with between-replicate standard deviations of the estimates) by total
number of observations using a classical animal model (a) and a genomic IBD animal model (b) with 1, 5 or 10 families for Scenario
1. The dotted line represents the true input heritability.
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families gives less accurate results (even in the absence of
common environmental effects). For a classical analysis
(and in absence of common environmental effects),

Falconer and Mackay [11] showed that the optimal family
size for a specific number of observations under a full-sib
design was n = 2/h2. However, using the genomic IBD

Figure 3 Across-replicate averages of estimated heritability (with between-replicate standard deviations of the estimates) by total
number of observations using a classical animal model (a) and a genomic IBD animal model (b) with 1, 5 or 10 families for Scenario 2.
The dotted line represents the true input heritability.
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approach, this formula is no longer valid. For a genomic
IBD analysis, including only a single large family will maxi-
mize the precision of the predicted Mendelian sampling
deviations of all family members, and there is also no need
to separate genetic and environmental family effects.
Furthermore, the number of families is necessarily lower
than the number of individuals, and prediction of Mende-
lian sampling deviations is therefore more informative
than prediction of family means with respect to genetic
variance. Estimation of genetic variance from family
means (classical model) is also sensitive to selection of
data (both within and among families), and failure to
account for this is expected to give downward biased esti-
mates of the genetic variance. In populations undergoing
artificial selection, parents of the phenotyped animals are
usually selected, and unbiased genetic analysis requires
that the selection history is properly included in the data,
i.e., the analysis should involve data on multiple genera-
tions, which is not always available. However, selection
among parents will have little impact on the within-family
genetic variance (in absence of inbreeding). Since the
genomic IBD model uses mainly within-family variation, it
is expected to be more robust to selection among parents.
Even with selective genotyping, the genomic IBD

model could estimate genetic variance relatively pre-
cisely for large families (N = 1000), although there was a
tendency towards overestimated heritability values and
less precise results for smaller family sizes. This may be
explained by the fact that only the phenotypically most
extreme individuals are genotyped and only these are
informative with respect to partitioning of residual and
Mendelian sampling variances.
The current study assumes that inheritance of the

haplotype blocks from parents to offspring is known. In
real data, this is never the case but we may observe gen-
ome-wide marker genotypes and this information can be
used to trace inheritance of the haplotype blocks.
Furthermore, since the number of recombinations per

gamete is limited, sharing of haplotype blocks within a
family can be estimated with a high degree of accuracy,
even with sparsely distributed genome-wide markers
[12]. Reconstructing paternal and maternal haplotype
blocks is equivalent to reconstructing the original
gametes received from the sire and dam, making the
genomic IBD animal model and a genomic IBD gametic
model equivalent.
In species with a low reproductive potential, the pro-

posed single-family mating design is of little relevance,
since large full-sib groups cannot be produced. How-
ever, some species have a high reproductive potential
among males, while the reproduction of females is often
limited (e.g., in mammalian livestock). For such species,
a sire gametic model may be more relevant. In such a
model, the sires’ gametes are reconstructed and the
actual relationships between them estimated. Genetic
variance can then be estimated from variation among
the sires’ gametes (half the within-family genetic var-
iance), rather than variation among individuals (sires’
and dams’ gametes). In this model, genetic variation due
to the dams’ gametes will be included in the random
residual term and genetic variance may be estimated
from samples of offspring (e.g., daughters of dairy bulls).
The proposed method can also be generalized to IBD

tracing in more complex pedigrees, i.e., beyond a single
generation, allowing information from various types of
relatives to be exploited by linkage analysis e.g., [13].
More distant relatives are generally less related but their
relationships are also expected to deviate more from
their expected values [14]. Hence, distant relatives may
provide additional value to estimate genetic variance,
especially for populations with smaller full- and half-sib
groups. However, tracing haplotype blocks over multiple
generations will be more challenging (shorter DNA
blocks due to more recombination) and will require
denser marker maps for accurate tracing compared with
the one-generation (sib) approach.
The proposed method will underestimate the total

genetic variance in cases where a fraction of the genome
is not covered by the markers, i.e., if some of the “effec-
tive loci” are not accounted for in the G matrix. For
instance, if a fraction q of the genome is not covered by
markers, the total variance will also be underestimated
by a fraction q when the single full-sib family design is
used. When the design contains several families, the
between-family variances are quite accurately predicted,
even if part of the genome is not covered by markers,
which will recover some of the underestimation. The
underestimation may be completely recovered by includ-
ing a polygenic effect in the model, which has a covar-
iance structure equal to the pedigree-based relationship
matrix, requiring several families of data.

Figure 4 Across-replicate averages of estimated single-family
heritability (with between-replicate standard deviations of the
estimates) by total number of observations using a genomic
IBD animal model with selective genotyping. The dotted line
represents the true input heritability.
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Scenarios 1 and 2 in the current study assumed that
genetic variance is evenly distributed over genomic
regions, as assumed in the genomic BLUP (GBLUP)

model [10]. The main difference between the GBLUP
model and the genomic IBD model is that the first
model uses identity-by-state (IBS) relationships, while

Figure 5 Across-replicate averages of estimated heritability (with between-replicate standard deviations of the estimates) by total
number of observations using a classical animal model (a) and a genomic IBD animal model (b) with 1, 5 or 10 families for Scenario 3.
The dotted line represents the true input heritability.
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the latter uses IBD relationships (based on marker
alleles traced back to a common ancestor). The assump-
tion that genetic variance is distributed evenly across
genomic regions has been shown to be an appropriate
approximation for a number of traits [15,16]. However,
there are also examples of the opposite assumption, e.g.,
genetic variation in resistance against infectious pan-
creas necrosis in Atlantic salmon seems largely con-
trolled by a single major QTL [17,18]. For the latter
type of traits, some of the underlying assumptions of
both the pedigree-based and genomic IBD models are
violated. First, within-family genetic variance will vary
greatly among families, depending on the actual parental
genotypes ("effective alleles”) for the genomic region
that primarily affects the trait (although it will still on

average be 1
2σ 2

a ); in the example on Atlantic salmon, the

within-family genetic variance will depend on whether
or not the parents segregate for the major QTL. Second,
IBD relationships in the most important linkage group
(s) will dominate genetic covariance between relatives,
not the overall genomic or expected (pedigree-based)
IBD relationships. Still, even for such data, the genomic
IBD model could estimate genetic variance more accu-
rately than the classical pedigree-based analysis. Hence,
although the genomic IBD relationships are not necessa-
rily representative of the genetic covariance structure
among sibs in this situation, they are still more informa-
tive than the pedigree-based relationships. In this set-
ting, the differences between the classic pedigree and
genomic IBD models increased with the size of the data-
set (no practical difference with 200 individuals but a
substantial difference with 1000 individuals). However,
estimation of genetic variance within a single family
was, as expected, highly prone to sampling effects. In
Scenario 3, the real number of different breeding values
represented within a single full-sib family is actually lim-
ited to four (two “effective alleles” per parent), which
explains the large between-replicate deviations in the
estimated heritability. Thus, in real data, for which the
underlying genetics of the trait is generally unknown, it
is recommended to use more than one family for quan-
titative genetic analysis, even when applying the geno-
mic IBD approach.

Conclusions
The proposed genomic IBD method is particularly rele-
vant for quantitative genetic studies aiming at estimating
additive genetic variance of highly fecund species, using
data on populations with limited pedigree information
and/or few available parents. For example, genetic var-
iance may be estimated based on a few full-sib-families
with parents sampled from the wild or from non-pedi-
greed domesticated populations. In principle, the

genomic IBD model (or equivalent gametic model)
requires only a single large family for proper and accu-
rate estimation of heritability for quantitative traits. In
contrast, classical pedigree-based estimation requires the
establishment of a sizeable pedigreed population consist-
ing of numerous full- and (preferably) half-sib families
to produce estimates with acceptable accuracy. Further-
more, the proposed genomic IBD model is expected to
be less affected by selection among parents and will
facilitate the separation of genetic and non-genetic
family effects (e.g., effects of common rearing).
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