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Abstract

Background: Genomic selection is a recently developed technology that is beginning to revolutionize animal
breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct
genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding
accuracies of prediction.

Methods: Deregressed estimated breeding values were used as observations in a weighted analysis to derive
direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were
clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships
between animals, with the aim of increasing within-group and decreasing between-group relationships. All five
combinations of four groups were used for model training, with cross-validation performed in the group not used
in training. Bivariate animal models were used for each trait to estimate the genetic correlation between
deregressed estimated breeding values and direct genomic values.

Results: Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of
0.44. Predictions were more accurate when animals within the validation group were more closely related to
animals in the training set. When training and validation sets were formed by random allocation, the accuracies of
direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship
between animals in training and validation. The accuracies of direct genomic values obtained from training on
older animals and validating in younger animals were intermediate to the accuracies obtained from K-means
clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding
values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.

Conclusions: These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a
young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely
produce for the industry the direct genomic values with the highest accuracy.

Background
Traditional methods of genetic evaluation depend on the
accumulation and analysis of phenotypic and pedigree
information to produce estimated breeding values
(EBV). For a given selection intensity, response to

selection measured in genetic standard deviations is pro-
portional to the ratio of the accuracy of EBV and gen-
eration interval. In practice, accuracy increases but the
generation interval is extended by waiting until the indi-
vidual or offspring phenotypic records are available to
estimate genetic merit, usually decreasing selection
response. Genomic selection is a recently developed
technology [1] that is beginning to revolutionize animal
breeding. It is currently possible to genotype cattle for
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at least 50 000 single nucleotide polymorphisms (SNP)
using a variety of assays, such as the BovineSNP50 [2],
BovineHD (Illumina, San Diego, CA) or Axiom BOS 1
(Affymetrix, Santa Clara, CA) assays. These SNP panels
can be used to produce direct genomic values (DGV), as
proposed by Meuwissen et al. [1], via the estimation of
marker effects from the analysis of a population with
SNP genotypes and trait phenotypes (training set). The
resulting estimates of SNP effects are then used in con-
junction with SNP genotypes and trait phenotypes from
a new group of animals (validation set) to evaluate the
performance of the DGV prediction model. The accura-
cies of the resulting DGV, determined as the correlation
between actual and predicted genetic merits, have only
recently begun to be reported for traits in beef cattle
[3-5], in contrast to numerous results from dairy cattle
populations, including New Zealand Holstein-Friesian
and Jerseys [6], North American Holstein [7], Australian
Holstein-Friesian [8], Norwegian Red cattle [9] and Dan-
ish Holsteins [10].
Habier et al. [11] indicated that genomic selection uses

genetic relationships among individuals and linkage dis-
equilibrium (LD) between markers and quantitative trait
loci (QTL) to improve the accuracy of DGV. The
increase in accuracy of evaluation from using a genomic
relationship matrix in traditional animal models comes
from replacing an expected relationship matrix, which is
conditional on the pedigree, with a realized matrix that
is not influenced by missing pedigree information or
violation of the assumption that the Mendelian sampling
of parental gametes is drawn from a distribution with
zero mean. In an earlier study, Nejati-Javaremi et al.
[12] replaced the pedigree-based relationship matrix
with a marker-based total allelic relationship matrix and
documented its impact on reducing prediction error var-
iance, hence, increasing the accuracy of evaluation.
Saatchi et al. [13] and Habier et al. [14] have shown that
the number of generations separating training and vali-
dation datasets influences accuracy, with lower accura-
cies occurring when this relationship is more distant.
The accuracy of DGV is key to the successful applica-

tion of genomic selection in animal breeding but cannot
be assessed in the training set. In practice, cross-valida-
tion can be performed in a sample of individuals that
are related to those in the training set but that were not
themselves included in training. The objective of this
study was to investigate accuracies of DGV predicted
for 16 economically important traits in US Angus beef
cattle. We employed K-means clustering to pedigree
estimates of the additive genetic relationships among
the 3570 genotyped animals to partition animals into
training and validation groups, with the aim of increas-
ing within-group and decreasing between-group rela-
tionships for cross-validation. We also compared these

results to those achieved from the more common prac-
tice of random allocation of individuals to the training
and validation groups and from training on old animals
and validating in young animals. In a national evalua-
tion, the DGV could be considered as a correlated trait
to that for which phenotypes are available for traditional
estimation of EBV [15], in which case estimates of the
genetic correlations between traits and respective DGV
are required. We derived prediction equations for DGV
and used these to estimate these correlations.

Methods
Genotype and phenotype data
A total of 3668 registered Angus bulls were genotyped
with the BovineSNP50 BeadChip (Illumina, San Diego,
CA) either at the University of Missouri (Columbia,
MO) or GeneSeek (Lincoln, NE). Forty animals had gen-
otypes that were inconsistent with the patrilineal pedi-
gree and were removed, as well as 58 additional animals
for which the genotype call rate (CR) was less than 95%,
leaving 3570 Angus bulls born between 1955 and 2008
(Table 1). The DNA for each bull was obtained from
cryopreserved semen provided by artificial insemination
(AI) organizations, the National Animal Germplasm
Program, the University of Maryland Wye herd, and
numerous breeders of registered Angus cattle [16]. Scor-
ing of marker genotypes was performed using Illumina’s
Beadstudio software (v3.2.23). Genotypes at a particular
locus were filtered from further analysis according to
the following criteria: (1) CR less than 90% (n = 472);
(2) minor allele frequency (MAF) less than 1% (n =
5164); and (3) for autosomal and pseudoautosomal loci,
Hardy-Weinberg equilibrium Chi-square statistic with 1
degree of freedom greater than 300 (n = 5745). These
filters were not independent and resulted in 9360 of the
54 442 loci being removed, leaving 45 082 loci for analy-
sis. Most animals had a few missing genotypes and these

Table 1 Birth year distribution of genotyped bulls (n =
3570)

Birth year Number of bulls (n)

1955 to 1959 8

1960 to 1964 10

1965 to 1969 26

1970 to 1974 53

1975 to 1979 57

1980 to 1984 114

1985 to 1989 212

1990 to 1994 446

1995 to 1999 699

2000 to 2004 705

2005 to 2008 1240
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were imputed (0.45% of all genotypes) using fastPHASE
[17].
Deregressed estimated breeding values (DEBV) were

used as response variables to estimate SNP effects. An
appropriate deregressing method, that removes parent
average effects and which accounts for heterogeneous
variance [18] was used to calculate DEBV from the EBV
and their reliabilities of genotyped bulls and their sires
and dams. Expected progeny differences (EPD) and their
Beef Improvement Federation (BIF) accuracies for the
genotyped bulls, their sires and dams were obtained
from the American Angus Association (AAA) national
cattle evaluation in August 2010. The EPD were trans-
formed to EBV by multiplying by 2, and the correspond-
ing reliabilities (R2) were obtained as:

R2 = 1 − (1 − BIF Accuracy)2.

In total, 16 traits were analyzed in this study: birth,
weaning and yearling weights; yearling height; mature
weight and height; maternal weaning weight (maternal
milk); fat thickness; marbling score; rib eye muscle area;
carcass weight; direct and maternal calving ease; scrotal
circumference; docility and heifer pregnancy rate. The
number of genotyped bulls with DEBV varied according
to trait because some traits have only recently been
introduced (e.g., heifer pregnancy) or because young
bulls did not yet have progeny measurements on some
traits (e.g., carcass composition traits). Heritabilities
(reported by AAA, http://www.angus.org/Nce/Heritabil-
ities.aspx), number of genotyped bulls with DEBV and
their mean DEBV reliabilities for the studied traits are
in Table 2.

Statistical model
In this study, all SNP markers that passed the filtering
process were used as predictors with weighted DEBV
used as response variables to estimate SNP effects. The
Bayesian method presented in [19], which we will refer
to as “BayesC,” was used to estimate marker effects for
genomic prediction. BayesC is related to both the
BayesB and BLUP methods presented by Meuwissen et
al. [1]. Like BLUP, BayesC assumes that SNP effects are
drawn from a distribution with constant variance, but
treats the common variance as unknown with a scaled
inverse-chi square prior. Like BayesB, BayesC fits a mix-
ture model that assumes some known fraction of mar-
kers (π) has zero effects. It has been shown that BayesC
is less sensitive to prior assumptions than is BayesB [20].
For each trait the following model was fit to the

DEBV data for training:

yi = μ +
k∑
j=1

zijuj + ei

where yi is the DEBV on animal i, μ is the population
mean, k is the number of marker loci in the panel, zij is
allelic state (i.e., number of B alleles from the Illumina A/
B calling system) at marker j in individual i, uj is the ran-
dom effect for marker j, with uj ∼ N(0, σ 2

u ) (with prob-
ability 1 - π) or uj = 0 (with probability π), and ei is a
residual with heterogeneous variance, depending on the
reliability of the information on the bull [18]. Details con-
cerning estimation of σ 2

u are described in Kizilkaya et al.
[19]. In this study, parameter π was assumed to be 0.995
for all analyses. Markov chain Monte Carlo (MCMC)
methods with 41 000 iterations were used to provide pos-
terior mean estimates of marker effects and variances
after discarding the first 1000 samples that were used for
burn-in. In preliminary analyses, all the genotyped bulls
were included in the training set to obtain estimates of
genetic and residual variances to construct the priors for
the genetic and residual scale parameters.
The DGV for individual i within a validation set was

derived as the sum of predicted effects of SNP posterior
means over all k marker effects estimated in the training
set:

DGVi =
k∑
j=1

zijûj

where DGVi is the DGV for individual i in the valida-
tion dataset, zij is the marker genotype of individual i
for marker j coded as for training, and ûj is the esti-
mated posterior mean effect of marker j over the 40 000
post burn-in samples. All analyses were performed using
the GenSel software [21].

Table 2 Heritability, number of genotyped bulls with
DEBV and mean reliabilities of DEBV

Trait h2 Number of bulls Reliability (R2)

Birth weight 0.42 3203 0.79

Calving ease direct 0.18 3180 0.62

Calving ease maternal 0.12 1965 0.59

Carcass weight 0.40 2448 0.41

Docility 0.37 1363 0.50

Fat thickness 0.34 3155 0.40

Heifer pregnancy rate 0.13 698 0.48

Marbling 0.45 3199 0.44

Maternal weaning weight 0.14 2066 0.70

Mature weight 0.55 1320 0.64

Mature height 0.82 1290 0.64

Rib eye muscle area 0.51 3231 0.47

Scrotal circumference 0.43 2464 0.69

Weaning weight 0.20 3191 0.69

Yearling weight 0.45 2239 0.70

Yearling weight 0.49 2755 0.69
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Cross-validation
The accuracy of DGV was evaluated by pooling esti-
mates using a 5-fold cross-validation strategy. Geno-
typed bulls were first divided into five mutually
exclusive groups. In each training analysis, the data
excluded one group to train on the remaining four
groups to estimate marker effects, which were then used
to predict DGV of individuals from the omitted group
(validation set). This resulted in every bull having pre-
dicted DGV obtained without using its own DEBV,
allowing that DEBV to be used in validation.
The K-means clustering method was applied to a dis-

similarity or distance matrix containing elements of one
minus the additive genetic relationship between pairs of
animals to partition the genotyped bulls into five groups
in which relatedness was increased within each group
and decreased between each of the groups.
The dissimilarity matrix (D matrix) between geno-

typed individuals was computed from elements of the
pedigree numerator relationship matrix (A matrix):

dij = 1 − aij√
aii · ajj ,

where dij is a measure of pedigree distance between
individual i and individual j, aij is the additive genetic
relationship between individual i and individual j, aii
(and ajj) are diagonal elements of the A matrix, which
represent the relationship coefficient (including inbreed-
ing) of individual i (or j) with itself. This formulation
removes the effects of inbreeding and results in the
diagonal elements of D being zero. We used the CFC
Package [22] to construct the relationship matrix
between the 3570 genotyped bulls, using pedigree infor-
mation for all 109 594 known ancestors. Founder ani-
mals that appeared only once in the pedigree were
pruned, which reduced the pedigree set to 91 001 ani-
mals. These individuals represented up to 64 pedigree
generations. We used the Hartigan and Wong [23] algo-
rithm, implemented using R [24] for K-means clustering.
The maximum relationship coefficient (amax) was calcu-
lated between each animal and all other animals in each
of the five partitioned groups, so that each animal had
five amax values. The density distributions of the five
amax values for all animals in a particular group were
used to quantify the quality of the clustering. For com-
parative purposes, random clustering was also per-
formed, with 5-fold cross-validation repeated for five
replicates for each of the studied traits.

Validation on younger animals
In practical livestock applications, training will occur on
historical animals, and the target population for imple-
mentation of genomic selection may include but not be

limited to their offspring. Thus, it has been common to
validate DGV on progeny (selection candidates) or in
young animals, as in US dairy cattle [7], where essen-
tially all historic and currently active AI sires have been
genotyped and are used in training. In contrast, many
beef cattle sires are used only by natural mating, and
cross-validation using less related training sets, rather
than immediate progeny, may more appropriately reflect
the DGV accuracies achieved in practice. However, for
comparison to the dairy results, we also partitioned the
genotyped bulls into two groups according to their birth
year and trained on the older bulls and validated in the
younger animals. Different birth years were used as
thresholds for this partitioning for each trait so that
about one-fifth of the individuals were always in the
validation set. The numbers of individuals in the train-
ing and validation sets and the birth year range for indi-
viduals in the validation set for each trait are in Table 3.

Accuracy of DGV
The accuracy of DGV could be defined as the correla-
tion between true genetic values and DGV(ρ̂gĝ), which
could be computed as:

ρ̂gĝ =
σ̂g,DGV

σ 2
g σ̂ 2

DGV

,

where ρ̂gĝ is the accuracy of DGV, σ̂g,DGV is the covar-

iance between true genetic values and DGV, σ 2
g and

σ̂ 2
DGV are the population additive genetic and the sample

Table 3 Numbers of individuals and birth-year range in
the training and validation sets

Training Validation

Trait Number Birth year Number Birth year

Birth weight 2515 1957-2006 688 2007-2008

Calving ease direct 2507 1957-2006 673 2007-2008

Calving ease maternal 1600 1957-2001 365 2002-2008

Carcass weight 1906 1957-2004 542 2005-2008

Docility 1130 1963-2004 233 2005-2008

Fat thickness 2268 1957-2006 887 2007-2008

Heifer pregnancy rate 565 1968-2001 133 2002-2008

Marbling 2308 1957-2006 891 2007-2008

Maternal weaning weight 1671 1957-2001 395 2002-2008

Mature height 1066 1957-2000 224 2001-2008

Mature weight 1072 1957-2000 248 2001-2008

Rib eye muscle area 2339 1957-2006 892 2007-2008

Scrotal circumference 2025 1957-2004 439 2005-2008

Weaning weight 2510 1957-2006 681 2007-2008

Yearling height 1843 1957-2003 396 2004-2008

Yearling weight 2182 1957-2004 573 2005-2008

Numbers and ranges from partitioning of older animals for training and
younger animals for validation

Saatchi et al. Genetics Selection Evolution 2011, 43:40
http://www.gsejournal.org/content/43/1/40

Page 4 of 16



DGV variances, respectively. The true genetic values of
genotyped animals are not available but the DEBV could
be used here with the same expectation of covariance
since
E

[
σ̂DEBV,DGV

]
= E

[
σ̂(g+e,DGV)

]
= σ̂g,DGV + σ̂e,DGV = σ̂g,DGV

if we assume, σ̂e,DGV = 0, where σ̂DEBV,DGV is the covar-
iance between DEBV and DGV. The following formula
was used to measure the accuracy of DGV:

ρ̂gĝ =
σ̂DEBV,DGV√

σ 2
g σ̂ 2

DGV

This formula is a generalization of the approach that
would be used when validation occurs in a set of indivi-
duals with phenotypes and the correlation between
DGV and phenotypes is standardized by dividing by the
square root of the heritability. The additive genetic var-
iance (σ 2

g ) was derived from:

σ 2
g = h2σ 2

p ,

where h2 is the trait heritability as reported by AAA
(Table 2) and σ 2

p is the phenotypic DEBV variance esti-
mated from the primary analysis using all genotyped
animals in the training set (as the sum of the estimated
genetic and residual variances).
The genotyped bulls represent birth years from 1955-

2008, a period with considerable genetic trend for
some traits. We estimated the generation interval in
the pedigree of the genotyped Angus cattle to be 4.99
years (data not shown), which is the average age of
bulls within the pedigree born between 1941 and 1990
(the part of the pedigree that captured most animals)
at the birth of their progeny. Accordingly, we fitted
contemporary groups defined by year of birth (in 5-
year intervals) as fixed effects to remove any effects of
selection that could inflate correlations. The sample
covariance and sample variances from each 5-year
interval were pooled according to their respective
degrees of freedom.

Regression of DEBV on DGV
The extent of prediction bias can be judged by compar-
ing the regression of true breeding value (here, DEBV)
on predicted breeding value (DGV), with its expected
value of 1 for each trait. Hence, the regression coeffi-
cients were calculated for each trait using simple linear
regression of DEBV on DGV.

Parent average and genomic-enhanced breeding values
Conventional genetic evaluation systems generate parent
average (PA) predictions that can be used to facilitate
animal selection prior to the measurement of individual
or offspring phenotypes. Thus, PA provides an accuracy

benchmark for comparison to the accuracy of DGV.
However, the available PA information in our dataset
does not represent that available on the parents of the
genotyped bulls at the time of their birth. Hence, we
tried to exclude information of the genotyped bull from
the cumulative information available on his parents
using the Garrick et al. [18] deregression method to cre-
ate an adjusted PA (PAadj) for each genotyped bull.
Also, genomic-enhanced breeding values (GEBV) blend-
ing PAadj and DGV obtained from K-means clustering
and cross-validation, was constructed as:

GEBV = b1PAadj + b2DGV,

where b1 and b2 were estimated using multiple regres-
sion with DEBV as the response variable. The accuracies
of PAadj and GEBV were calculated with the same for-
mula as for DGV for each trait. Contemporary groups
within each of the five partitioned groups based on 5-
year birth intervals were considered as fixed effects to
allow for the effects of genetic trends in each trait and
fair comparisons with the accuracies of DGV.

Genetic correlations between traits and DGV
For each of the 16 traits, we applied a weighted bivariate
analysis using DGV of genotyped animals from the five
validation sets obtained by K-means clustering and 5-
fold cross-validation and their DEBV to estimate var-
iance and covariance components. The model was:

[
DEBV
DGV

]
=

[
X1 0
0 X2

] [
β1

β2

]
+

[
Z1 0
0 Z2

] [
α1

α2

]
+

[
e1
e2

]

where b1 and b2, are vectors of fixed effects (only the
trait mean for b1 but class effects of the five K-means
partitioned groups for b2); a1 and a2, are vectors of ran-
dom additive genetic effects for the two traits,
Var(α2) = Aσ 2

α2
, Var(α2) = Aσ 2

α2
and Cov(α1,α2) = Aσα1,α2,

where A is the pedigree numerator relationship matrix;
e1 and e2, are vectors of mutually uncorrelated random
residual effects for the two traits, Var(e1) = Iσ 2

e1 and

Var(e2) = Wσ 2
e2, where I is an identity matrix and W is a

diagonal matrix containing the r-inverse weights accord-
ing to the reliability of the bulls’ DEBV [18], which are
the same weights as used in the estimation of SNP
effects; X and Z are known design matrices for fixed
effects and random additive genetic effects, respectively.
The purpose of fitting this model was to estimate the
genetic correlation between the DGV and the trait (rg
(DGV,T)), which is required to pool DGV and traditional
EBV in national genetic evaluation [15], the square of
which represents the proportion of genetic variance
accounted for by the genomic information if the DGV
has a heritability of 1. Variance components were
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estimated by restricted maximum likelihood (REML)
using the ASReml v3.0 software package [25].

Results
K-means and random clustering
Table 4 shows the number of individuals, the average
inbreeding coefficients, and amax within and between
the K-means clustered groups. Figure 1 shows the den-
sity distribution of inbreeding coefficients for each of
the five groups. Group 5, with 220 bulls, was charac-
terized with high levels of inbreeding (about 10%) and
represents animals from the Wye Angus herd formed
from an importation of bulls from the British Isles and
then closed to new germplasm in 1958 (http://wyean-
gus.umd.edu/History.cfm), along with two bulls from
Dunlouise Angus (http://www.dunlouiseangus.com/), a
Scottish herd of native origin Angus. Some bulls pro-
duced within the Wye herd have been used in artificial
insemination within the national Angus herd, leading
to nontrivial relationships of group 5 with the other
groups.
Table 4 shows that amax values within a group are

much larger than the average of the amax values of a
group with the other four groups. The greatest differ-
ence between these amax values was for group 5, which
had the highest within group amax (0.58) and the lowest
amax with the other groups (0.11). These values indicate
that, on average, any animal in group 5 had some rela-
tive within the group with an additive relationship
exceeding 0.5, the relationship of a non-inbred parent
with offspring or with non-inbred full-sibs. In contrast,
on average, any animal in group 5 had an additive rela-
tionship of less than 0.125 with its closest relative in the
four other groups, less than the relationship of a non-
inbred individual with its great-grandparent or between
cousins. Figure 2 expands on the information in Table 4
by showing the density distribution of amax of each indi-
vidual in a particular group with all animals in the same
or different groups. The amax statistic has high densities
within each group around 0.5, representing sire-son or
full-sib relationships, and around 0.25, representing

grandparent-offspring or half-sib relationships, but a low
density in the equivalent regions between groups. Figure
2 shows that the K-means clustering partitioned indivi-
duals into related groups with decreased relationship
between groups. These results also show that group 5 is
a distinct group that is less related to the other groups.
The results from random clustering were markedly

different from those from K-means clustering. With ran-
dom clustering, there were no significant differences
between the average within and between group amax

values, which ranged from 0.34 to 0.37 over the five ran-
domly clustered replicates. Figure 3 shows the amax den-
sity distribution for each individual in a particular group
with all animals in the same or different groups for one
of the randomly clustered groups. There were no signifi-
cant differences in relationships between the groups.
The amax statistic has high densities around 0.25 and
0.5, both within and between groups, which indicates
that most individuals within each group have at least
one close relative in each of the other groups.

Table 4 The number of individuals and the averages (± standard deviation)

Groups 1 2 3 4 5

Number 1033 885 1084 348 220

Birth year 1995.2 ± 10.3 1999.3 ± 6.2 2003.9 ± 4.6 1999.5 ± 5.4 1985.2 ± 10.9

Inbreeding 0.033 ± 0.036 0.047 ± 0.033 0.042 ± 0.026 0.035 ± 0.034 0.102 ± 0.054

aij within group 0.038 ± 0.036 0.099 ± 0.060 0.088 ± 0.057 0.161 ± 0.086 0.188 ± 0.100

amax within group 0.42 ± 0.14 0.49 ± 0.10 0.45 ± 0.12 0.49 ± 0.11 0.58 ± 0.09

amax between groups 0.18 ± 0.14 0.23 ± 0.17 0.23 ± 0.18 0.23 ± 0.18 0.11 ± 0.15

For birth year, inbreeding coefficients, within group pedigree relationships (aij), maximum within and between group relationships (amax) for five partitioned
groups after K-means clustering

Figure 1 The density distribution of inbreeding coefficients in
each clustered group.
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Accuracy of DGV with K-means and random clustering
The accuracies of DGV based on training in four groups
partitioned by K-means clustering and predicting the
other group for birth, weaning and yearling weights and

averaged over all 16 traits are in Table 5. The results
show considerable variation in accuracy between groups.
Accuracies were lowest for group 5, which was less
related to the other groups. Table 6 presents the pooled

Figure 2 The density distribution of the maximum additive genetic relationships (amax). The density distribution of the maximum additive
genetic relationships (amax) between each individual in a particular group and all animals in the same or different groups formed by K-means
clustering

Saatchi et al. Genetics Selection Evolution 2011, 43:40
http://www.gsejournal.org/content/43/1/40

Page 7 of 16



accuracy of DGV by K-means clustering and 5-fold
cross-validation for all studied traits. Also, phenotypic
and genetic variances (σ 2

p and σ 2
g , respectively) used for

standardization of the covariance and the regression of
DEBV on DGV for each trait is shown in Table 6.

Accuracies of DGV varied and ranged from 0.22 to
0.69, with an average of 0.44 over all traits. Among the
post-natal growth traits, the accuracies of DGV for birth
weight and yearling height were higher than for weaning
and yearling weight. Accuracies of DGV for carcass

Figure 3 The density distribution of the maximum additive genetic relationships (amax). The density distribution of the maximum additive
genetic relationships (amax) between each individual in a particular group and all animals in the same or different groups when groups were
formed at random
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traits were generally higher than for growth traits. Mar-
bling and rib eye muscle area had the highest DGV
accuracies among all the studied traits. Accuracies of
DGV for reproductive and behavioral traits were consid-
erably lower than for other traits. Docility and heifer
pregnancy rate had the lowest DGV accuracies (less
than 0.3) among all studied traits.
Training was generally less accurate for traits with

fewer animals with DEBV (Table 2 and Table 6). Traits
exhibiting the highest bias, having regressions of DEBV
on DGV departing from 1, also exhibited less accuracy,
regardless of the number of animals with DEBV. For
example, rib eye muscle area and yearling height, which
had the highest accuracy, exhibited little bias (deviations
from 1 of 0.007 and 0.015, respectively), while weaning
weight and docility, which had low accuracies, had the
most bias (0.403 and 0.386, respectively). In general,
predictions tended to be biased downwards, as the aver-
age regression coefficient was 0.937 across all traits.

Table 6 also presents the average regression coeffi-
cients and the pooled accuracy of DGV obtained by ran-
dom clustering and 5-fold cross-validation in five
replicates for all traits. The accuracies of these DGV
were considerably higher for all traits than the corre-
sponding accuracies obtained by K-means clustering.
The average of DGV accuracies over all traits was 0.65,
which is 0.21 higher than the average of DGV accuracies
obtained by K-means clustering.

Accuracy of DGV with validation in young animals
The comparison of accuracies of DGV obtained by K-
means or random clustering and cross-validation meth-
ods with the accuracies of DGV obtained from training
on older animals and validating in younger animals is
shown in Figure 4. The accuracies of DGV obtained
from training on older animals and validating in
younger animals were higher than the accuracies
obtained from K-means clustering and cross-validation
for all traits except calving ease maternal. However,
these accuracies were lower than the accuracies of DGV
obtained by random clustering and cross-validation for
most traits.

Parent average and GEBV
Figure 5 shows the accuracy of PAadj and the GEBV
(blending PAadj and DGV) versus the accuracy of DGV
for all studied traits. In general, the genomic prediction
accuracies were similar to the PAadj accuracies for most
traits. However, for all growth traits except mature
weight and mature height, the accuracy of PAadj was

Table 5 Accuracies of DGV for five K-means clustered
groups and the pooled accuracy

Trait Birth weight Weaning weight Yearling weight All traits

Group 1 0.561 0.422 0.434 0.450

Group 2 0.703 0.323 0.335 0.463

Group 3 0.464 0.320 0.360 0.446

Group 4 0.542 0.235 0.260 0.377

Group 5 0.356 0.184 0.273 0.258

Pooled 0.554 0.333 0.356 0.441

For birth, weaning and yearling weight; and averaged across all 16 studied
traits

Table 6 Phenotypic and additive genetic variance; accuracies of DGV and regressions of DEBV on DGV

K-means Random

Trait σ 2
p σ 2

g ρ̂gĝ β̂y,x ρ̂gĝ β̂y,x

Birth weight (kg) 20.63 8.67 0.554 0.879 0.700 0.953

Calving ease direct (%) 825.05 148.51 0.488 0.942 0.617 1.007

Calving ease maternal (%) 1313.37 157.6 0.416 1.181 0.571 1.277

Carcass weight (kg) 1535.06 614.03 0.471 1.130 0.689 1.208

Docility (%) 1634.60 604.8 0.218 0.614 0.490 1.150

Fat thickness (mm) 4.8 1.63 0.603 1.113 0.793 1.211

Heifer pregnancy rate (%) 1031.74 134.13 0.269 1.337 0.378 1.580

Marbling (units) 0.797 0.359 0.690 1.058 0.817 1.041

Maternal weaning weight (kg) 1160.85 162.52 0.318 0.702 0.492 0.829

Mature height (mm) 494.03 405.13 0.359 0.977 0.819 1.091

Mature weight (kg) 4638.66 2551.28 0.312 0.898 0.769 1.125

Rib eye muscle area (mm2) 430.32 219.35 0.601 0.993 0.694 0.958

Scrotal circumference (mm) 839.98 361.19 0.487 0.916 0.600 0.983

Weaning weight (kg) 1558.04 311.61 0.333 0.597 0.534 0.760

Yearling height (mm) 344.68 155.19 0.575 1.015 0.850 1.011

Yearling weight (kg) 2049.19 1004.12 0.356 0.642 0.573 0.790

Phenotypic variance (σ 2
p ) and additive genetic variance (σ 2

g ) obtained from the primary analysis using all genotyped animals in the training set; the accuracy of
DGV (ρ̂gĝ) and the regression of DEBV on DGV (β̂y,x) obtained by K-means and random clustering (five replicates) along with 5-fold cross-validation for 16 traits
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Figure 4 The accuracies of DGV obtained by three different methods. Comparison of the accuracies of DGV obtained by three different
methods: K-means clustering and cross-validation, random clustering and cross-validation and validation on younger animals); traits- bw: birth
weight, ced: calving ease direct, cem: calving ease maternal, cw: carcass weight, doc: docility, fat: fat thickness, hpg: heifer pregnancy rate, mrb:
marbling, mww: maternal weaning weight, mwt: mature weight, mht: mature height, rea: rib eye area, sc: scrotal circumference, ww: weaning
weight, yht: yearling height and yw: yearling weight

Figure 5 The accuracies of DGV (from K-means clustering), PAadj and GEBV. Comparison between the accuracies of DGV, adjusted parent
average (PAadj) and GEBV from combining PAadj and DGV for all studied traits; traits: bw: birth weight, ced: calving ease direct, cem: calving ease
maternal, cw: carcass weight, doc: docility, fat: fat thickness, hpg: heifer pregnancy rate, mrb: marbling, mww: maternal weaning weight, mwt:
mature weight, mht: mature height, rea: rib eye area, sc: scrotal circumference, ww: weaning weight, yht: yearling height and yw: yearling weight
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slightly higher than the accuracy of DGV, while the
accuracy of DGV exceeded that of PAadj for all carcass
and some reproductive traits (calving ease direct and
maternal). The accuracy of PAadj was higher than the
accuracy of DGV for docility. The accuracy of the
GEBV obtained from blending PAadj and DGV informa-
tion did not substantially improve the genetic prediction
over the more accurate source of information (PAadj or
DGV) for any trait. Regression coefficients and the cor-
relation between PAadj and DGV are shown in Table 7.
As expected, regression coefficients of DEBV on DGV
were greater than the regressions of DEBV on PAadj for
traits for which the DGV was more accurate than PAadj

and vice versa. The regression coefficient for DGV ran-
ged from 0.17 (for docility) to 1.20 (for carcass weight),
while regression coefficients for PAadj ranged from -0.19
(for carcass weight) to 0.82 (for docility). The correla-
tion between DGV and PAadj ranged from 0.27 to 0.65,
with an average of 0.48 across traits.

Genetic correlations between traits and DGV
Table 8 presents the estimated heritabilities of DGV and
traits and the genetic correlations between the trait and
their respective DGV. The estimated variance and covar-
iance for heifer pregnancy rate had high standard errors
due to an inadequate number of training bulls and are
not presented. Heritabilities of DGV for the remaining
traits were more than 0.80 and the genetic correlations
between trait and DGV ranged from 0.15 (for docility)
to 0.80 (for carcass weight). Heritabilities of DGV less
than one reflect genotyping errors (<0.5%), effects of
missing pedigree information and within-family selection

on the estimation of the pedigree relationship matrix,
and differences in the prediction equation between vali-
dation groups. Estimates of genetic correlations between
the trait and DGV reflect the accuracies of DGV pooled
across groups. The estimated heritabilities for traits
using the bivariate animal model were lower than the
corresponding heritabilities reported by AAA (Table 2).

Discussion
The accuracy of DGV is critical to determine the utility
of DGV in relation to genotyping costs. In simulation
studies, the correlation between DGV and true breeding
values (TBV) has been used to represent the accuracy of
DGV. However, in field data, TBV are not available and
the correlation between DGV and the response variable
(phenotype records, EBV, DEBV, etc.) typically underes-
timate the accuracy of DGV due to the contribution of
environmental effects and random error to the response
variable. Habier et al. [14] estimated marker effects
using daughter yield deviations (DYD) of dairy bulls and
divided the correlation between DGV and DYD by the
average accuracy of the DYD to estimate the correlation
between DGV and TBV. Su et al. [10] used the average
accuracy of EBV to adjust the simple correlation
between DGV and EBV (the response variable). VanRa-
den et al. [7] divided the GEBV accuracy by the mean
accuracy of the DYD and then added the difference
between the published and observed accuracy of PA to
calculate the realized genomic accuracy. However, using
the mean accuracy as an adjustment factor does not
consider the heterogeneous error variance, which is
associated with the DEBV of different bulls and this

Table 7 Regression coefficients of PAadj and DGV on
DEBV (b1 and b2, respectively); the correlation between
PAadj and DGV (Cor(PAadj, DGV))

Trait b1 b2 Cor(PAadj, DGV)

Birth weight 0.66 0.54 0.41

Calving ease direct 0.38 0.80 0.51

Calving ease maternal 0.13 1.09 0.45

Carcass weight -0.19 1.20 0.51

Docility 0.82 0.17 0.27

Fat thickness 0.03 1.10 0.54

Heifer pregnancy rate 0.23 1.09 0.40

Marbling 0.17 0.97 0.65

Maternal weaning weight 0.69 0.42 0.60

Mature height 0.21 0.81 0.48

Mature weight 0.04 0.87 0.37

Rib eye muscle area 0.24 0.89 0.61

Scrotal circumference 0.49 0.60 0.54

Weaning weight 0.50 0.42 0.38

Yearling height 0.70 0.56 0.47

Yearling weight 0.54 0.46 0.46

Table 8 Estimates of heritability and genetic correlations
between traits and their respective DGV

Trait h2DGV h2T rg(DGV,T)

Birth weight 0.87 ± 0.03 0.37 ± 0.03 0.58 ± 0.03

Calving ease direct 0.83 ± 0.03 0.11 ± 0.01 0.64 ± 0.03

Calving ease maternal 0.95 ± 0.02 0.03 ± 0.01 0.67 ± 0.06

Carcass weight 0.84 ± 0.03 0.16 ± 0.03 0.80 ± 0.06

Docility 0.75 ± 0.04 0.34 ± 0.04 0.15 ± 0.06

Fat thickness 0.85 ± 0.03 0.20 ± 0.02 0.68 ± 0.05

Marbling 0.86 ± 0.02 0.32 ± 0.02 0.73 ± 0.05

Maternal weaning weight 0.86 ± 0.03 0.09 ± 0.01 0.41 ± 0.04

Mature height 0.89 ± 0.04 0.69 ± 0.04 0.34 ± 0.06

Mature weight 0.84 ± 0.04 0.34 ± 0.04 0.41 ± 0.06

Rib eye muscle area 0.90 ± 0.02 0.41 ± 0.03 0.73 ± 0.04

Scrotal circumference 0.82 ± 0.03 0.24 ± 0.03 0.68 ± 0.04

Weaning weight 0.81 ± 0.03 0.14 ± 0.01 0.49 ± 0.03

Yearling height 0.93 ± 0.02 0.40 ± 0.03 0.45 ± 0.04

Yearling weight 0.84 ± 0.03 0.39 ± 0.03 0.56 ± 0.03

Heritability of DGV(h2DGV ± SE), heritability of traits (h2T ± SE) and genetic
correlations between traits and their respective DGV(rg(DGV,T) ± SE) estimated
from bivariate animal models
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may lead to a bias. In this study, accuracy was obtained
by standardizing the estimated covariance between
DEBV and DGV using the genetic variance.
Reports on the accuracy of DGV for beef cattle are

scarce. Rolf et al. [26] found low accuracies of about 0.3
for average daily feed intake, residual feed intake and
average daily gain, when a genomic relationship matrix
was used for 2405 genotyped Angus steers and sires. In
dairy cattle, Harris et al. [6] reported accuracies of DGV
for young bulls with no daughter information ranging
from 0.71 to 0.82 for milk production traits, live weight,
fertility, somatic cell count and longevity, compared to
an average accuracy of 0.58 for PA in a New Zealand
Holstein population. In their study, accuracies of DGV
for linear type traits were lower than for production
traits and ranged from 0.63 to 0.71, compared to an
average of 0.56 for PA for these traits. The average
accuracy from combining DGV and PA for 27 traits in
the North American Holstein population reported by
VanRaden et al. [7] was 0.71, compared to 0.52 from PA
alone. Accuracies for GEBV combining DGV and
national EBV for 12 Dutch Holstein traits ranged from
0.52 to 0.82, with an average of 0.71 [27]. Luan et al. [9]
reported accuracies of DGV for milk, fat and protein
yields, first lactation mastitis and calving ease ranging
from 0.12 to 0.62 using a small sample (500 genotyped
bulls) of Norwegian Red cattle. Su et al. [10] reported
simple correlations between DGV and published EBV
(as a response variable) ranging from 0.50 to 0.84, with
an average of 0.65 and adjusted correlations ranging
from 0.70 to 0.85, with an average of 0.74 for 18 traits
in a Danish Holstein population. These authors also
reported that simple and adjusted accuracies were 0.36
and 0.51 higher than the accuracies of PA. Hayes et al.
[8] reported accuracies of DGV ranging from 0.37 to
0.74 for five simple and index traits in Australian Hol-
stein cattle. In general, however, it is difficult to com-
pare the accuracies from different studies because of
differences in trait heritabilities, data types (phenotypes,
EPD, DYD or DEBV), training and validation set sizes,
validation methods (set definition) and statistical meth-
ods to estimate marker effects.
In general, the DGV accuracies obtained here by K-

means clustering and 5-fold cross-validation were lower
than reported for dairy cattle for traits with similar her-
itabilities. For example, Su et al. [10] used 5-fold cross-
validation in a genotyped group of 3330 bulls (almost
the same size as this study) and reported modified
accuracies of 0.71 and 0.72 for birth index and calving
index traits. Accuracies obtained for similar traits (birth
weight and calving ease direct) in our study were 0.55
and 0.49, respectively. The main reason for the lower
accuracies observed in our study is the validation
method, where we deliberately tried to minimize the

relationship between members of the training and vali-
dation sets by K-means clustering. Habier et al. [11]
showed that DGV use realized genetic relationships
among individuals to increase the accuracy of DGV (i.e.,
the accuracy of a DGV on a selection candidate
decreases as the average genetic relationship to the
training set individuals decreases). Thus, the accuracies
of DGV obtained by random clustering or from training
in older animals and prediction in younger animals
(which can generate larger genetic relationships between
members of the training and validation sets) are higher
than accuracies of DGV obtained by K-means clustering.
Another reason for the lower accuracies obtained in

our study is that the accuracy of genotyped bulls EBV
(used to derive the DEBV response variable) is lower in
beef than in dairy cattle because artificial insemination
is less used [28]. The average accuracy of EBV for the
genotyped bulls across traits was only 0.77 in this study
but 0.89 in the study by Su et al. [10]. The accuracy of
DGV will increase as the accuracy of EBV increases
because the response variable will be closer to the true
breeding value. Another reason for the lower accuracies
in comparison to those from dairy cattle studies could
be the different extents and patterns of LD, which exist
among breeds due to differing population histories and
effective population sizes (Ne). De Roos et al. [29] found
that, for distances between 100 kb (kilobase) and 1 Mb
(Megabase), Dutch Holstein-Friesian (HF) had the high-
est LD, followed by Dutch Red and White HF, then
Australian Angus and New Zealand Jersey, and finally
Australian HF and New Zealand HF, demonstrating that
the extent of LD differs between subpopulations within
a breed such as HF. The subpopulations have different
historical backgrounds and effective population sizes.
Prasad et al. [30] showed that there are regions of high
and low LD across the chromosomes in both the Angus
and Holstein breeds and a clear difference was observed
in the pattern of LD between the two breeds. A differ-
ence in the extent of LD over different chromosomes
has also been reported by McKay et al. [31] in Angus
and other breeds.
Another reason for the lower accuracies of DGV

observed in this study could be due to different Ne

between breeds. Goddard and Hayes [32] showed that
more animals are needed for training to obtain the same
accuracy with increasing effective population size. De
Roos et al. [29] estimated an effective population size of
about 100 for Dutch black-and-white Holstein-Friesian
bulls, Dutch red-and-white Holstein-Friesian bulls, Aus-
tralian Holstein-Friesian bulls, Australian Angus ani-
mals, New Zealand Friesian cows, and New Zealand
Jersey cows. An effective population size less than 100
was estimated for the North American Holstein popula-
tion by Kim and Kirkpatrick [33]; Ne = 103 for German
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Holstein cattle by Qanbari et al. [34]; and Ne = 49, 53
and 47 for Danish Holstein, Danish Jersey and Danish
Red cattle by Sorensen et al. [35]. Marquez et al. [36]
reported a high effective population size (Ne = 445) for
American Red Angus beef cattle, whereas a relatively
low effective population size (Ne = 85) was estimated
for American Hereford beef cattle by Cleveland et al.
[37]. We estimated a high effective population size Ne =
654 ± 31 for American Angus beef cattle (data not
shown), which is much higher than that found for
North American Holstein and American Hereford beef
cattle.
DGV were generally less accurate for traits that had

fewer animals with DEBV. The importance of training
population size on the accuracies of DGV has been
shown in several studies [1,38]. Although training popu-
lation size and the accuracy of DEBV have a large effect
on the accuracy of DGV, the accuracy also depends on
other factors such as the genetic architecture of the trait
(assumptions about π) and the LD between markers and
with genes that affect the trait, which could differ
between traits. Hayes et al. [39] showed that the accu-
racy of genomic predictions is higher for traits with
some loci having large effects than for traits with no loci
of large effect. The difference in the accuracy of DGV
between low and high heritability traits was relatively
small. In most studies using simulated data, the pheno-
type of genotyped individuals is used to estimate marker
effects and in this case heritability has been shown to
affect the accuracy of genomic prediction [38,40]. In this
study, we used DEBV to estimate marker effects and
DGV. Using DEBV as the response variable is expected
to make the DGV accuracy less dependent on heritabil-
ity and more a function of the EBV accuracy. Here, EBV
were predicted from a fairly large dataset, resulting in
relatively high accuracies even for traits with a low her-
itability. Low heritability traits such as fitness traits have
been largely ignored in livestock breeding due both to
their low heritability and difficulty in recording. How-
ever, bulls can have a high accuracy for a low heritability
trait if they have sufficient progeny. Thus, these traits
could be included in genomic selection programs if sui-
table training sets could be formed.
Comparing the DGV accuracies obtained from K-

means clustering and cross-validation to those for PAadj

indicated that the accuracies were similar for most
traits. The superiority of DGV accuracies over PAadj

accuracies for carcass traits could be due to the lower
accuracy of parental EBV for these traits, which are
measured in limited numbers of progeny of these par-
ents at slaughter. The PAadj accuracies obtained in this
study were higher than those reported in other studies
[7,8] primarily because the available PA information in
our dataset does not represent that available on the

parents of the genotyped bulls at the time of their birth.
The deregression method used here only excluded infor-
mation for the genotyped bull from the cumulative
information available on his parents and did not exclude
information from other relatives, including grand-pro-
geny, which are informative for the meioses that pro-
duced the bull being deregressed and the majority of the
genotyped bulls belonged to large patrilineages. VanRa-
den et al. [7] showed that combined predictions (PA
and genomic predictions) were more accurate than PA
(0.22 to 0.62 greater with nonlinear genomic predic-
tions) in North American Holstein bulls. In this study,
the accuracy of GEBV obtained by combining DGV and
PAadj information did not increase the accuracy for
most traits, suggesting that the PAadj may not be fully
independent of the Mendelian sampling effect that pro-
duced the bull for which deregression was performed.
The gain from combining DGV with PAadj depends on
the accuracy of DGV and PAadj and the correlation
between them. Less gain in accuracy is expected from
combined values if the two information sources are
highly correlated. In this study, the accuracies of PA
were higher than those available at the time of an ani-
mal’s birth because the older animals in this population
were all ancestors of the younger animals. Thus, in
practice, the accuracies of PA on young selection candi-
dates would be lower than found here because the PA
would not contain information on grand-progeny and
more gain could be expected from combining DGV with
PA information. In addition, if the animal’s own record
is available before the selection decision, we have the
advantage of that record in addition to PA. In this situa-
tion, less gain could be expected from combining DGV
with an animal model EBV that included the individual
record. However, in beef cattle, the only observation we
typically have on a young bull before it is selected (at
castration) is birth weight.
Estimates of variance and covariance components

between traits and their respective DGV indicated that
heritabilities of the DGV were greater than 0.80 but less
than the expected value of 1, when DGV were obtained
by K-means clustering and cross-validation (Table 8).
The estimated heritabilities for DGV were higher
(greater than 0.99) when DGV were obtained by random
clustering and cross-validation (data not shown). Herit-
abilities less than 1 for the DGV obtained by K-means
clustering and cross-validation show that the estimated
marker effects were not consistent between training sets
due to the differences in relatedness between the train-
ing and validation groups when five separate models
were used to estimate the DGV of animals in each
group. However, essentially the same extent of pedigree
relatedness is expected when groups are constructed
randomly (i.e., groups do not represent subpopulations)
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which leads to the heritability of DGV being close to 1.
The estimated correlations between trait and respective
DGV were higher than those reported by MacNeil et al.
[15] for the same traits in Angus cattle, because they
used a 384 SNP subset derived from the Illumina Bovi-
neSNP50 BeadChip to obtain DGV and validated in a
single group (correlations of 0.68, 0.73, and 0.80 in com-
parison to 0.50, 0.65 and 0.54 for fat thickness, marbling
and carcass weight, respectively, Table 8). Estimates of
heritability for traits using the bivariate animal model
were lower than the corresponding heritabilities
reported by AAA or obtained by the weighted univariate
animal model using DEBV (results not shown).
This could be due to the dependency between DEBV

and DGV when the DGV of animals in one group were
predicted from the DEBV of animals in the four other
groups. Although five separate models were used to pre-
dict DGV, the DGV of individuals in one group are lin-
ear combination of the DEBV of individuals in the other
groups which makes the covariance matrix between
DEBV and DGV close to singular in the bivariate animal
model analysis. More studies are needed to overcome
this problem.
We used 5-fold cross-validation to evaluate the accu-

racy of DGV. The advantage of multi-fold cross-valida-
tion is that it can retain large training and validation
sets. However, in contrast to most previous studies, we
used K-means clustering to minimize the genetic rela-
tionships between groups. The distribution of amax

(maximum additive-genetic relationship) for individuals
within each group indicated that amax has a high density
around 0.5 (sire-son relationships) and 0.25 (half-sib
relationships) but a low density between groups. The
distribution of inbreeding coefficients within each group
revealed that the Wye population and its descendants
(group 5) was distinct from the other groups, with an
average inbreeding coefficient of about 0.10 due to the
closing of the herd 10 generations ago and this group
had low average relationships to the other groups.
Accuracies of DGV were generally lower for this group,
although it had a larger training set size.
When validation was performed on the younger ani-

mals or in groups obtained by random clustering, the
accuracies of DGV were much higher than when cross-
validation was performed in the K-means defined groups
because of the higher genetic relationships between the
training and validation set individuals. The lower accu-
racy of DGV for maternal calving ease in the younger
animals is likely the result of low accuracies of EBV
(and DEBV) in the younger animals, as these young
bulls have few if any daughters of sufficient age to pro-
duce calving ease information. The higher accuracy of
DGV with random clustering over validation on younger
animals is caused by the higher genetic relationships

between the training and validation sets within the ran-
domly formed groups. These results demonstrate that
validation is sensitive to the choice of the validation
sample and to the pedigree relationships between the
animals contributing to the validation and training sets,
and the accuracies of DGV are dependent on the
strength of genetic relationships between the training
and validation sets. Thus, on the one hand, a dynamic
training population will maintain an approximately con-
stant average genetic relationship between animals in
the training set and younger animals available for selec-
tion, leading to the largest possible DGV accuracies. On
the other hand, future selection candidates, which do
not have close relatives in the training set, will have
DGV with reduced accuracies. However, we anticipate
that there will be greater LD between markers and QTL
and thus less dependency of the accuracies of DGV on
the genetic relationships between training and validation
sets when the recently released Illumina BovineHD and
Affymetrix BOS 1 panels are employed for genomic
selection.

Conclusion
This study applied genomic prediction to US Angus beef
cattle. By minimizing the relationships between training
and validation groups using K-means clustering, the
accuracy of DGV ranged from 0.22 to 0.69, with an
average 0.44 across 16 economically important traits.
Accuracies ranged from 0.38 to 0.85 with an average of
0.65 when training and validation sets were created by
random allocation. Estimates of genetic correlations
between traits and their respective DGV (obtained by K-
means clustering) ranged from 0.15 to 0.80. These
results demonstrate the feasibility of developing DGV
for Angus beef cattle and show that the accuracy of pre-
dictions will deteriorate as the relationship between ani-
mals in the training set and selection candidates
decreases. This suggests that, when using the Bovi-
neSNP50 BeadChip in the American Angus beef cattle
population, a dynamic training set will be required to
maximize the accuracy of selection in young animals
and that the accuracy of DGV for animals in a popula-
tion will be improved by including their sires in the
training set.

Acknowledgements
We are indebted to numerous breeders of registered Angus cattle and to
the AI companies that provided semen. In particular, we are grateful to Dr.
Harvey Blackburn, the National Animal Germplasm Program and to the
University of Maryland for providing samples from a large number of older
bulls.

Author details
1Department of Animal Science, Iowa State University, Ames, 50011, USA.
2Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.
3Bovine Functional Genomics Laboratory, ARS, USDA, Beltsville, MD 20705,

Saatchi et al. Genetics Selection Evolution 2011, 43:40
http://www.gsejournal.org/content/43/1/40

Page 14 of 16



USA. 4American Angus Association, 3201 Frederick Avenue, Saint Joseph,
64506, USA. 5Igenity Livestock Business Unit, Merial Limited, Duluth, 30096,
USA. 6Institute of Veterinary, Animal and Biomedical Sciences, Massey
University, Palmerston North, New Zealand.

Authors’ contributions
MS performed the statistical analyses, applied the K-means method for
clustering genotyped animals and wrote the first draft of the manuscript.
DJG and JFT designed the experiment, supervised the study and critically
contributed to the final version of manuscript. RDS, JCMD and RLF
participated in discussion and reviewed the manuscript. The other authors
contributed materials. All authors read and approved the final manuscript.

Competing interests
SB and BW are employed by the Igenity Livestock Business Unit that markets
DNA diagnostic tests to cattle breeders. This includes a product for
genomic-enhanced EPD for Angus cattle derived from the analysis of a
subset of animals used in this study. SLN is employed by The American
Angus Association, a corporation organized as a non-profit institution that
provides members with EPD based on pedigree, performance and
sometimes genomic information. The other authors declare that they have
no competing interests.

Received: 22 August 2011 Accepted: 28 November 2011
Published: 28 November 2011

References
1. Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value

using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.
2. Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP,

O’Connell J, Moore SS, Smith TPL, Sonstegard TS, Van Tassell CP:
Development and characterization of a high density SNP genotyping
assay for cattle. PLoS One 2009, 4:e5350.

3. Bolormaa S, Hayes BJ, Savin K, Hawken R, Barendse W, Arthur PF, Herd RM,
Goddard ME: Genome-wide association studies for feedlot and growth
traits in cattle. J Anim Sci 2011, 89:1684-1697.

4. Garrick DJ: The nature, scope and impact of genomic prediction in beef
cattle in the United States. Genet Sel Evol 2011, 43:17.

5. Snelling WM, Allan MF, Keele JW, Keuhn LA, Thallman RM, Bennett GL,
Ferrell CL, Jenkins TG, Freetly HC, Nielsen MK, Rolfe KM: Partial-genome
evaluation of postweaning feed intake and efficiency of crossbred beef
cattle. J Anim Sci 2011, 89:1731-1741.

6. Harris BL, Johnsen DL, Spelman RJ: Genomic selection in New Zealand
and the implications for national genetic evaluation. Proceedings of the
36th ICAR Biennial Session: 16-20 June 2008; Niagara Falls. ICAR Technical
Series 2008, 13:325.

7. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD,
Taylor JF, Schenkel FS: Invited review: Reliability of genomic predictions
for North American Holstein bulls. J Dairy Sci 2009, 92:16-24.

8. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME: Invited review:
Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci
2009, 92:433-443.

9. Luan T, Wooliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE: The
accuracy of genomic selection in Norwegian Red cattle assessed by
cross-validation. Genetics 2009, 183:1119-1126.

10. Su G, Guldbrandsen B, Gregersen VR, Lund MS: Preliminary investigation
on reliability of genomic estimated breeding values in the Danish
Holstein population. J Dairy Sci 2010, 93:1175-1183.

11. Habier D, Fernando RL, Dekkers JCM: The impact of genetic relationship
information of genome-assisted breeding values. Genetics 2007,
177:2389-2397.

12. Nejati-Javaremi A, Smith C, Gibson JP: Effect of total allelic relationship on
accuracy of evaluation and response to selection. J Anim Sci 1997,
75:1738-1745.

13. Saatchi M, Miraei-Ashtiani SR, Nejati-Javaremi A, Moradi-Shahrebabak M,
Mehrabani-Yeganeh H: The impact of information quantity and strength
of relationship between training set and validation set on accuracy of
genomic estimated breeding values. Afr J Biotechnol 2010, 9:438-442.

14. Habier D, Tetens J, Seefried F, Lichtner P, Thaller G: The impact of genetic
relationship information on genomic breeding values in German
Holstein cattle. Genet Sel Evol 2010, 425:5.

15. MacNeil MD, Northcutt SL, Schnabel RD, Garrick DJ, Woodward BW,
Taylor JF: Genetic correlations between carcass traits and molecular
breeding values in Angus cattle. Proceedings of Ninth World Congress on
Genetics Applied to Livestock Production: 1-6 August 2010, Leipzig 2010, 482
[http://www.kongressband.de/wcgalp2010/assets/pdf/0482.pdf].

16. McClure MC, Morsci N, Schnabel RD, Kim JW, Yao P, Rolf MM, McKay SD,
Gregg SJ, Chapple RH, Northcutt SL, Taylor JF: A genome scan for
quantitative trait loci influencing carcass, post-natal growth and
reproductive traits in commercial Angus. Anim Genet 2010, 41:597-607.

17. Scheet P, Stephens M: A fast and flexible statistical model for large-scale
population genotype data: applications to inferring missing genotypes
and haplotypic phase. Am J Hum Genet 2006, 78:629-644.

18. Garrick DJ, Taylor JF, Fernando RL: Deregressing estimated breeding
values and weighting information for genomic regression analyses.
Genet Sel Evol 2009, 41:55.

19. Kizilkaya K, Fernando RL, Garrick DJ: Genomic prediction of simulated
multibreed and purebred performance using observed fifty thousand
single nucleotide polymorphism genotypes. J Anim Sci 2010, 88:544-551.

20. Habier D, Fernando RL, Kizilkaya K, Garrick DJ: Extension of the Bayesian
alphabet for genomic selection. BMC Bioinformatics 2011, 12:186.

21. Fernando RL, Garrick DJ: GenSel - User manual for a portfolio of genomic
selection related analyses.[http://taurus.ansci.iastate.edu/], Accessed 2010
Sept 1.

22. Sargolzaei M, Iwaisaki H, Colleau JJ: CFC: A tool for monitoring genetic
diversity. Proceedings of Eighth World Congress on Genetics Applied to
Livestock Production: 13-18 August 2006; Belo Horizonte. CD-ROM
Communication 27-28.

23. Hartigan JA, Wong MA: Algorithm AS 136: A k-means clustering
algorithm. Appl Stat 1979, 28:100-108.

24. R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing. Vienna 2011 [http://
www.r-project.org/].

25. Gilmour AR, Gogel BJ, Culls BR, Thompson R: ASReml User Guide Release
3.0. Hernel Hempstead: VSN International Ltd;[http://www.vsni.co.uk/
downloads/asreml/release3/UserGuide.pdf], Accessed 2011 June 1.

26. Rolf MM, Taylor JF, Schnabel RD, McKay SD, McClure MC, Northcutt SL,
Kerley MS, Weaber RL: Impact of reduced marker set estimation of
genomic relationship matrices on genomic selection for feed efficiency
in Angus cattle. BMC Genet 2010, 11:24.

27. De Roos APW, Schrooten C, Mullaart E, Van Der Beek S, De Jong G,
Voskamp W: Genomic selection at CRV. Interbull Bull 2009, 39:47-50.

28. Garrick DJ, Golden BL: Producing and genetic evaluations in the United
States beef industry of today. J Anim Sci 2009, 87:E11-E18.

29. De Roos APW, Hayes BJ, Spelman R, Goddard ME: Linkage disequilibrium
and persistence of phase in Holstein Fresian, Jersey and Angus cattle.
Genetics 2008, 179:1503-1512.

30. Prasad A, Schnabel RD, McKay SD, Murdoch B, Stothard P, Kolbehdari D,
Wang Z, Taylor JF, Moore SS: Linkage disequilibrium and signatures of
selection on chromosomes 19 and 29 in beef and dairy cattle. Anim
Genet 2008, 39:597-605.

31. McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J,
Coppieters W, Crews D, Dias Neto E, Gill CA, Gao C, Mannen H, Stothard P,
Wang Z, Van Tassell CP, Williams JL, Taylor JF, Moore SS: Whole genome
linkage disequilibrium maps in cattle. BMC Genet 2007, 74:1-12.

32. Goddard ME, Hayes BJ: Mapping genes for complex traits in domestic
animals and their use in breeding programmes. Nat Rev Genet 2009,
10:381-391.

33. Kim ES, Kirkpatrick BW: Linkage disequilibrium in the North American
Holstein population. Anim Genet 2009, 40:279-288.

34. Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR,
Simianer H: The pattern of linkage disequilibrium in German Holstein
cattle. Anim Genet 2010, 41:346-356.

35. Sorensen AC, Sorensen MK, Berg P: Inbreeding in Danish dairy cattle
breeds. J Dairy Sci 2005, 88:1865-1872.

36. Marquez GC, Speidel SE, Enns RM, Garrick DJ: Genetic diversity and
population structure of American Red Angus cattle. J Anim Sci 2010,
88:59-68.

37. Cleveland MA, Blackburn HD, Enns RM, Garrick DJ: Changes in inbreeding
of U.S. Herefords during the twentieth century. J Anim Sci 2005,
83:992-1001.

Saatchi et al. Genetics Selection Evolution 2011, 43:40
http://www.gsejournal.org/content/43/1/40

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/11290733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19390634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19390634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21239664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21239664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21569623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21569623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21297062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21297062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21297062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19109259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19109259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19164653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19164653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19704013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19704013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19704013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20172238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20172238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20172238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18073436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18073436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9222829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9222829?dopt=Abstract
http://www.kongressband.de/wcgalp2010/assets/pdf/0482.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20477797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20477797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20477797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16532393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16532393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16532393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20043827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20043827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19820059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19820059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19820059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21605355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21605355?dopt=Abstract
http://taurus.ansci.iastate.edu/
http://www.r-project.org/
http://www.r-project.org/
http://www.vsni.co.uk/downloads/asreml/release3/UserGuide.pdf
http://www.vsni.co.uk/downloads/asreml/release3/UserGuide.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20403185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20403185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20403185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18849385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18849385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18622038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18622038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18717667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18717667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19448663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19448663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19220233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19220233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20055813?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20055813?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19783699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19783699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15827243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15827243?dopt=Abstract


38. Goddard ME: Genomic selection: prediction of accuracy and
maximization of long-term response. Genetica 2009, 136:245-257.

39. Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME: Genetic
architecture of complex traits and accuracy of genomic prediction: coat
color, milk-fat percentage, and type in Holstein cattle as contrasting
model traits. PLoS Genet 2010, 6(9):e1001139.

40. Calus MPL, Veerkamp RF: Accuracy of breeding values when using and
ignoring the polygenic effect in genomic breeding value estimation
with a marker density of one SNP per cM. J Anim Breed Genet 2007,
124:362-368.

doi:10.1186/1297-9686-43-40
Cite this article as: Saatchi et al.: Accuracies of genomic breeding values
in American Angus beef cattle using K-means clustering for cross-
validation. Genetics Selection Evolution 2011 43:40.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Saatchi et al. Genetics Selection Evolution 2011, 43:40
http://www.gsejournal.org/content/43/1/40

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/18704696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18704696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18076473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18076473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18076473?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Genotype and phenotype data
	Statistical model
	Cross-validation
	Validation on younger animals
	Accuracy of DGV
	Regression of DEBV on DGV
	Parent average and genomic-enhanced breeding values
	Genetic correlations between traits and DGV

	Results
	K-means and random clustering
	Accuracy of DGV with K-means and random clustering
	Accuracy of DGV with validation in young animals
	Parent average and GEBV
	Genetic correlations between traits and DGV

	Discussion
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

