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Abstract

Background: Genomic prediction of breeding values involves a so-called training analysis that predicts
the influence of small genomic regions by regression of observed information on marker genotypes for a
given population of individuals. Available observations may take the form of individual phenotypes,
repeated observations, records on close family members such as progeny, estimated breeding values
(EBV) or their deregressed counterparts from genetic evaluations. The literature indicates that
researchers are inconsistent in their approach to using EBV or deregressed data, and as to using the
appropriate methods for weighting some data sources to account for heterogeneous variance.

Methods: A logical approach to using information for genomic prediction is introduced, which
demonstrates the appropriate weights for analyzing observations with heterogeneous variance and
explains the need for and the manner in which EBV should have parent average effects removed, be
deregressed and weighted.

Results: An appropriate deregression for genomic regression analyses is EBV/r2 where EBV
excludes parent information and r2 is the reliability of that EBV. The appropriate weights for
deregressed breeding values are neither the reliability nor the prediction error variance, two
alternatives that have been used in published studies, but the ratio (1 - h2)/[(c + (1 - r2)/r2)h2] where
c > 0 is the fraction of genetic variance not explained by markers.

Conclusions: Phenotypic information on some individuals and deregressed data on others can be
combined in genomic analyses using appropriate weighting.

Background
Genomic prediction [1] involves the use of marker
genotypes to predict the genetic merit of animals in a
target population based on estimates of regression of
performance on high-density marker genotypes in a
training population. Training populations might involve
genotyped animals with alternative types of information
including single or repeated measures of individual
phenotypic performance, information on progeny,

estimated breeding values (EBV) from genetic evalua-
tions, or a pooled mixture of more than one of these
information sources. In pooling information of different
types, it is desirable to avoid any bias introduced by
pooling and to account for heterogeneous variance so
that the best use is made of available information.

Uncertainty as to whether or not EBV should be used
directly or deregressed or replaced by measures such as
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daughter yield deviation (DYD) [2], and the manner in
which information should be weighted, if at all, has been
apparent for some time in literature related to discover-
ing and fine-mapping quantitative trait loci (QTL).
Typically in fixed effects models with uncorrelated
residuals, observations would be weighted by the inverse
of their variances. Morsci et al. [3] pointed out the
counter intuitive behavior of using the reciprocal of the
variance of breeding values as weights in characterization
of QTL and followed the arguments of Rodriguez-Zas
et al. [4] in using reliability as weights. Rodriguez-Zas
et al. [4] did analyses that were limited by features of the
chosen software so EBV/2 (i.e. predicted transmitting
ability PTA) were multiplied by the square root of
reliability and analyzed unweighted. Georges et al. [5]
deregressed PTA to construct DYD and weighted these
using the inverse of the variance of the DYD. Spelman
et al. [6] had direct access to DYD and similarly weighted
these by the inverse of their scaled variance, equivalent
to using the inverse of reliability as weights. Other
researchers have reported the use of PTA [7], standar-
dized PTA [7,8] or DYD weighted by respective
reliabilities [8]. The uncertainty associated with using
information for QTL discovery has recently been
extended to genomic prediction. An Interbull survey
[9] of methods being used in various countries for
genomic prediction of dairy cattle reported that some
researchers used deregressed proofs weighted with
corresponding reliabilities, others used DYD weighted
by effective daughter contributions, while yet others used
EBV without any weighting. The objective of this paper is
to present a logical argument for using deregressed
information, appropriately weighted for analysis. For
simplicity, we consider the residual variance from the
perspective of an additive model but the deregression
and weighting concepts extend to analyses that include
dominance and epistasis.

Methods
An ideal model
Genomic prediction involves the use of genotypes or
haplotypes to predict genetic merit. Conceptually, it
involves two phases, a training phase where the
genotypic or haplotypic effects are estimated, typically
as random effects, in a mixed model scenario, followed
by an application phase where the genomic merit of
selection candidates is predicted from the knowledge on
their genotypes and previously estimated effects from the
training phase. The ideal data for training would be true
genetic merit data observed on unrelated animals in the
absence of selection. In that case, the model equation
would be:

g Ma  1  , (1)

where g is a vector of true genetic merit (i.e. breeding
value BV) with var(g) = T g

2 , the scalar  g
2 is the genetic

variance and T can be constructed using the theory from
combined linkage disequilibrium and linkage analyses
[10], μ is an intercept, M is an incidence matrix whose
columns are covariates for substitution, genotypic or
haplotypic effects, a are effects to be estimated, var(Ma) =
G M

2 , G is a genomic relationship matrix [11-13], ε is the
lack of fit, var(ε) = E 

2 , hopefully small and will be 0 if
BV could be perfectly estimated as a linear function of
observed marker genotypes. In different settings, a might
be defined as a vector of fixed effects [14] or a vector of
random effects [1]. Even when a is fixed, Ma is random
because M, which contains genotypes, is random. How-
ever, in genomic analysesM is treated as fixed because the
analysis is conditional on the observed genotypes. The
philosophical issues related to the randomness ofM and a
are discussed in detail by Gianola [15] but for our context
it is sufficient to define var(Ma) = G M

2 without explicitly
specifying distributional properties of M or a.

Genotypes used as covariates in Ma are unlikely to
capture all the variation in true genetic merit, either
because they are not comprehensively covering the entire
genome, or because linkage disequilibrium between
markers and causal genes is not perfect. Knowledge of
E is required in the analysis whether a is treated as a fixed
(e.g. GLS) or random effect (e.g. BLUP). In practice with
experiments that involve related animals, it is unreason-
able to assume E has a simple form such as a diagonal
matrix since that implies a zero covariance between lack
of fit effects for different animals, however, it can be
approximated using knowledge on the pedigree using the
additive relationship matrix, A [16]. These lack of fit
covariances can be accommodated by fitting a polygenic
effect for each animal, in addition to the marker
genotypes [17], or accounted for by explicitly modeling
correlated residuals. For a non-inbred animal,
   g M

2 2 2  , therefore   
2 2 2 g M and the propor-

tion of the genetic variance not accounted for by the

markers can be defined to be c
g

M

g
  






2

2

2

21 . The scalar

c, will be close to 0 if markers account for most of the
genetic variation and close to 1 if markers perform poorly.

A model using individual phenotypic records
In practicewe do not have the luxury of using true BV as data
in genomic prediction. A more common circumstance
might involve training based on phenotypic observations
that include fixed effects on phenotype denoted Xbwhere X
is an incidence matrix for fixed non-genetic effects in b. An
appropriate model equation for phenotypes is

y Xb g e   , (2)
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where e is a vector of random non-genetic or residual
effects. In comparison to (1), the use of y for training
involves the addition of the vectors Xb and e to the left-
and right-hand side, inflating the variance and giving

y 1 Xb Ma e    ( ) ( ),  (3)

with var( )    e A Ic g e
2 2 since cov(ε, e’) = 0. This

model can be fitted by explicitly including a random
polygenic effect for ε, or by accounting for the non-
diagonal variance-covariance structure of the residuals
defined as var (ε + e). Including a polygenic term is not
typically done in genomic prediction analyses [12,18],
and when undertaken does not seem tomarkedly alter the
accuracy of genomic predictions [Habier D. Personal
communication]. Assuming var (ε + e) is a scaled identity
matrix facilitates the computing involved in fitting this
model, as the relevant mixed model equations can be
modified by multiplying the left- and right-hand sides by
the unknown scale parameter as is typically done in single
trait analyses. However, this is not an option if residuals
are heterogeneous, for example, because they involve
varying numbers of repeated observations.

A model using repeated records on the individual
Consider the circumstance where the training observa-
tions are a vector y n representing observations that are
the mean of n observations on the individual with n
potentially varying. In that case, equation (3) becomes

y 1 Xb Ma en n    ( ) ( ),  (4)

With var( )e Dn  , a diagonal matrix with elements

var( ) [ ( ) ]e hn p
n t
n   1 1 2 2 with  p

2 being the phe-

notypic variance, heritability h2, and repeatability t.
Ignoring off-diagonal elements of E, the elements of the
inverse of R with R = var(ε) + D would for non-inbred
animals be [ var( )]c eg n 2 1  . In fixed effects models,
this matrix can be arbitrarily scaled for convenience. In
univariate random effects models, a common practice is
to formulate mixed model equations using the ratios of
residual variance to variances of the random effects.
Here, it makes sense to factor out the residual variance of
one phenotypic observation, i.e.  e

2 , from the expres-
sion for the residual variance of the mean of n
observations. In this circumstance, a scaled inverse of
the residual variance being w c en e g n  2 2/ [ var( )] or
equivalently

w
h

ch
n t
n

h
n 



   

1 2

2 1 1 2( )
, (5)

which can be used for weighted regression analyses
treating marker effects as fixed or random. When c = 0,
the genetic effects can be perfectly explained by the
model, and for n = 1, a single observation on the
individual, the weight is 1 for any heritability. Scaling
the weights is convenient because records with high
information exceed 1 and the weights are trait indepen-
dent which is useful when analysing multiple traits with
identical heritability and information content.

Offspring averages as data
In some cases the training data may represent the mean
of p individual measurements on several offspring, rather
than the mean phenotype of the genotyped animal.
In that circumstance, the residual variance includes
a genetic component for the mate and Mendelian
sampling. For half-sib progeny means with unrelated
mates and no common environmental variance,

var( )
( . )

ep
g e
p
0 75 2 2  . However, the half-sib progeny

mean contains only half the genetic merit of the parent,
therefore the genotypic covariates need to be halved, or
the mean doubled, in order to analyse data that includes
records on genotyped individuals and records on off-
spring of genotyped individuals. The variance for twice

the progeny mean is 2
4 0 75 2 2

 


var( )
( . )

ep
g e
p

  , and

adding var( )  c g
2 , factoring out  e

2 and inverting
gives

w
h

ch
h
p

p 


 

1 2

2 4 2( )
.

(6)

For full-sib progeny means the intraclass correlation
of residuals will include a genetic component
and perhaps a common environmental component

(e.g. litter, with variance  l
2 and l l

g

2
2

2



giving

var( )
( . )

ep l
g e
p 



 2 0 5 2 2

for unrelated parents. Adding

variation due to c g
2 factoring out  e

2 and inverting
gives

w
h

ch l h
h

p

p 


  

1 2

2 2 2 1 0 5 2( . )
.

(7)

This expression can be used as weights in the fixed or
random regression of full-sib progeny means on parent
average marker genotypes.
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Estimated breeding values as training data
An estimated breeding value, typically derived using
BLUP, can be recognised as the true BV plus a prediction
error. That is, ˆ ( ˆ )g g g g   . Accordingly, training on
EBV might be viewed as extending the model equation in
(1) by the addition of the prediction error, in the same
way that (3) was derived by the addition of a residual
nongenetic component. The model equation would
therefore be

g g g g Ma g g       ( ) ( ( )).  1  (8)

There are at least two issues with this formulation of the
problem, which may not be immediately apparent, and
which both result from properties of BLUP. The first issue
is that the addition of the prediction error term to the left-
and right-hand side of (8) actually reduces rather than
increases the variance, despite the fact that diagonal
elements of var( )g g must exceed 0, in contrast to the
addition of non-genetic random residual effects in (3).
That is var( ) var( )g gi i  , whereas var(gi) < var(yi), due
to shrinkage properties of BLUP estimators [19].
Generally, var( ) var( ) var( ) cov( , )  g g g g g gi i i i i i    2
b u t f o r B L U P cov( , ) var( ) g g gi i i s o t h a t
var( ) var( ) var( ) g g g gi i i i   implying var( ) var( )g gi i  0 .
The reduction in variance of the training data comes
about because prediction errors are negatively
correlated with BV as can be readily shown since
cov( , ) cov( , ) var( ) var( ) var( )g g g g g g g gi i i i i i i i        0 . T h i s
means that superior animals tend to be underevaluated
(i.e. have negative prediction errors) whereas inferior
animals tend to be overevaluated. This is a con-
sequence of shrinkage estimation and prediction
e r r o r s b e i n g u n c o r r e l a t e d w i t h E BV , i . e .
cov( , ) var( ) cov( , )   g g g g g gi i i i i i    0 . In order to
account for the covariance between the prediction errors
and the BV, a model that accounted for such covariance
would need to be fitted. Suchmodels are computationally
more demanding compared to models whereby the fitted
effects and residuals are uncorrelated. The second issue
resulting from the properties of BLUP, is that it is a
shrinkage estimator, that shrinks observations towards
the mean, the extent of shrinkage depending upon the
amount of information. This is apparent if one considers
the regression of phenotype on true genotype (i.e. BV)
which is 1, whereas the regression of EBV on BV is equal to
ri
2 ≤ 1, where ri

2 is the reliability of the EBV (for animal i)
or squared correlation between BV and EBV. In the
context of any marker locus, the contrast in EBV between
genotypes at a particular locus is shrunk relative to the
contrast that would be obtained if BV or phenotypes were
used as data, with the shrinkage varying according to ri

2 .
We are, however, interested in estimating the effect of a
marker on phenotype, but we get a lower value for the
contrast if EBV with ri

2 ≤ 1 are used as data, rather than

using phenotypes. A further complication is that training
data based on EBV typically comprise individuals with
varying ri

2 . This problem can be avoided by deregressing
or unshrinking the EBV.

Deregressing estimated breeding values
The solution to the model fitting problems associated
with the reduced variance of EBV and the inconsistent
regression of EBV on genotype according to reliability
can both be addressed by inflating the EBV. Rather than
fitting (8), we will fit the linearly inflated data
represented as K g for some diagonal matrix K. That is,
we will fit:

Kg g Kg g 1 Ma Kg g         ( ) ( ( )),  (9)

for somematrixK chosen so that cov( , )g k g gi i i i   0 and

cov( , )k g gi i i is a constant. Since cov( , ) var( ) var( )g k g g k g gi i i i i i i   

then this expression will be 0 when k
gi
gi ri

i  var( )

var( )
1
2 .

For this value ki, cov( , ) var( )
var( )
var( )

var( ) var( )k g g k g
gi
gi

g gi i i i i i i 


   ,

a constant for all animals regardless of their reliability.
Accordingly, the deregression matrix is K = diagonal{ }ri

2

and the deregressed observations are g ri i/ 2 . Note in
passing that the nature of the deregression will depend
upon the EBV base. Genetic evaluations are typically
adjusted to a common base before publication, by
addition or subtraction of some constant. The EBV should
be deregressed after removing the post-analysis base
adjustment or by explicitly accounting for the base in the
deregression procedure [20]. To show the dependence of
the deregression to the post-analysis base, supposes
that EBV are adjusted to a base, b. Then a linear contrast
in deregressed EBV without removing the base effect

is
   gi b

ri

g j b

r j

gi
ri

g j

r j

b

ri

b

r j

 


 















 











2 2 2 2 2 2




 
















 gi
ri

g j

r j
2 2

unless r ri j
2 2 . Marker effects are typically estimated as

linear combinations of data, and will therefore be
sensitive to the base adjustment.

A deregressed observation represents a single value that
encapsulates all the information available on the
individual and its relatives, as if it was a single
observation with h2 = r2. This can be shown by
recognising that h2 is the regression of genotype on
phenotype. Taking the deregressed observation to be the

phenotype, h
gi ri g

gi ri

ri gi

ri gi
r2

2

2
1 2

1 4
  
cov( / , )

var( / )

/ var( )

/ var( )








ii
2 .

Training on deregressed EBV is therefore like training

Genetics Selection Evolution 2009, 41:55 http://www.gsejournal.org/content/41/1/55

Page 4 of 8
(page number not for citation purposes)



on phenotypes with varying h2. Provided ri
2 > h2,

training on deregressed EBV is equivalent to having a
trait with higher heritability. However, as explained later,
we recommend removing ancestral information from the
deregressed EBV.

Weighting deregressed information
Deregressed observations have heterogeneous variance
when r2 varies among individuals. The residual
variance of a particular deregressed observation is
var( ) var( ) var( ) var( ) var( )  i i i i i i i i i i ik g g k g g k g        2  var( ) var( )g k gi i i2 

b u t var( ) var( )g r gi i i 2 a n d k ri i
2 1 s o t h e

r e s i dua l v a r i an c e e xp r e s s i on s imp l i f i e s t o

var( ) var( )
( )

var( ) i i i i i ik g g
ri

ri

g   



1 2

2
. Ignoring

the off-diagonal elements of var(ε) as before, the diagonals
of the inverse of the residual variance after factoring out  e

2

are



e

c ri ri g

2

1 2 2 2[ ( )/ ] 
which simplifies to give

w
h

c ri ri h
i 



 

1 2

1 2 2 2[ ( )/ ]
(10)

an expression analogous to (5) with n = 1 and h2 = ri
2 .

Note that the weight in (10) approaches 1 2

2
h
ch

as ri
2 !1

in which case the weight tends to infinity as c!0. This is
the same as would occur when the number of offspring
p!∞, and p is used as a weight.

Removing parent average effects
Animal model evaluations by BLUP using the inverse
relationship matrix shrink individual and progeny
information towards parent average (PA) EBV [21]. It
makes sense to remove the PA effect as part of the
deregression process for two reasons. First, some animals
may have EBV with no individual or progeny informa-
tion. These animals cannot usefully contribute to
genomic prediction. This is apparent if one imagines a
number of halfsibs with individual marker genotypes
and deregressed PA EBV. These animals cannot add any
information beyond what would be available from the
common parent’s genotype and EBV. Second, if any
parents are segregating a major effect, about half the
offspring will inherit the favourable allele and the others
will inherit the unfavourable allele. However, the EBV of
both kinds of offspring will be shrunk towards the
parent average. Parent average effects can be eliminated
by directly storing the individual and offspring dereg-
ressed information and corresponding r2 during the
iterative solution of equations carried out for the
purposes of genetic evaluation [2]. In some cases
researchers do not have access to the evaluation system
used to create the EBV on their training populations. In

those circumstances, it is necessary to approximate the
evaluation equations and backsolve for deregressed
information free of the effects of parent average. This
can be done for one training animal at a time, given h2

and knowledge of only the EBV (unadjusted for the
base) and r2 on the animal, its sire and its dam.
First, compute parent average (PA) EBV and reliability
for animal i with s i re and dam as parents :

  
gPA

g sire gdam 
2

, and rPA
rsire rdam2
2 2

4
 . Assuming sire

and dam are unrelated and not inbred, the additive

genetic covariance matrix for PA and offspring is

G 










0 5 0 5

0 5 1
2. .

.
 g with inverse

4 2

2 2
2












 g . Using

this result, recognise that the equations to be solved are:

 
 


















 












Z Z

Z Z

g

g

y

y

PA PA

i i

PA

i

PA

i

4

2

 
 







*

* 
, (11)

where yi
 is information equivalent to a right-hand-side

element pertaining to the individual, Z ZPA PA and Z Zi i
reflects the unknown information content of the parent
average and individual (plus information from any of its
offspring and/or subsequent generations), l = (1 - h2)/h2

is assumed known. Define

 
 









 








Z Z

Z Z

c c

c c

PA PA

i i

PA PA PA i

i PA i i

4

2

1 
 




, ,

, ,



 C

then using the facts [19] that ri
gi
gi

2  var( )
var( )
 and

var( )g G C   e
2 leads to r cPA

PA PA2 0 5 . , , and
r ci

i i2 1 0 . , . R e a r r ang in g th e s e equa t i on s ,
c rPA PA

PA
, ( . ) / 0 5 2  , and c ri i

i
, ( . ) / 1 0 2  . The

formula to derive the inverse of a 2 × 2 matrix
applied to the coefficient matrix from (11) gives
c Z Z detPA PA

i i
, (   2   , and c Z Z deti i

PA PA
, (   4  

for det Z Z Z ZPA PA i i     ( )( )4 2 4 2   .

Equating these alternative expressions for cPA, PA leads to

( ) / [( )( ) ] ( . ) / ,        Z Z Z Z Z Z ri i PA PA i i PA2 4 2 4 0 52 2    

(12)

and equating the expressions for ci, i leads to

( ) / [( )( ) ] ( . ) / .        Z Z Z Z Z Z rPA PA PA PA i i i4 4 2 4 1 02 2    

(13)

Second, solve these nonlinear equations for Z ZPA PA and
Z Zi i . Although not obvious, there is a direct solution

for Z ZPA PA and Z Zi i . It can be derived by dividing (12)
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by (13), defining    ( . ) / ( . )0 5 1 02 2r rPA i , and rear-
ranging to get

    Z Z Z Zi i PA PA  2 2 1( ). (14)

Substituting the expression for Z Zi i in (14) into the
denominator of (13), defining   1 0 5 2/ ( . )rPA , and
rearranging leads to a quadratic expression in Z ZPA PA ,
namely 0 5 4 0 5 2 4 1 02 2. ( ) ( . )( ) ( / )       Z Z Z ZPA PA PA PA     ,
which has a positive root that can rearranged to

    Z ZPA PA     ( . ) . ( / ).0 5 4 0 5 162 (15)

Application of (15) provides the solution for Z ZPA PA
that can be substituted in (14) to solve for Z Zi i ,
together enabling reconstruction of the coefficient matrix
of (11).

Third, the right-hand side of (11) can be formed by
multiplying the now known coefficient matrix by the
known vector of EBV for PA and individual. The right-
hand side on the individual, free of PA effects is yi

 The
equation to obtain an estimate of EBV for animal i, free
of its parent average, gi PA , based only on yi

 , is
[ ][ ] [ ]  

Z Z g yi i i PA i  and the corresponding ri
2* for

use in constructing the weights in (10) is given by
r Z Zi i i
2 1 0* . / ( )     . The deregressed information

is
gi PA

ri


2* , which simplifies to yi

ZiZi

*


and is analogous to

an average. An iterative procedure using mixed model
equations to simultaneously deregress all the sires in a
pedigree, while jointly estimating the base adjustment
and accounting for group effects was given by Jairath
et al [20]. However, that method requires knowledge on
the numbers of offspring of each sire.

Double counting of information from descendants
Genetic evaluation of animal populations results in EBV
that are a weighted function of the parent average EBV,
any information on the individual, adjusted for fixed
effects, and a weighted function of the EBV of offspring,
adjusted for the merit of the mates [2]. The previous
section has argued for the removal of parent average
effects in constructing information for genomic analyses.
It could be argued that information from genotyped
descendants should also be removed to avoid double
counting. This can be achieved during the evaluation
process, and is desirable in the absence of selection. If
the genotyped descendants are a selected subset, the
removal of their information will lead to biased
information on the individual. Simulation suggests
that the double counting of descendants performance
has negligible impact on genomic predictions (results
not shown).

Results
Weights for different information sources
Comparative weights for individual and average of n
individual observations using (5), and for progeny
means of p halfsibs using (6) and deregressed EBV of
varying reliability using (10) are in Table 1.

Removing parent average effects
Suppose genomic training is to be undertaken for a trait
using EBV available from national evaluations that have
yet to be deregressed. Widely-used bulls have been
genotyped and the EBV and r2 of those bulls are
available, along with corresponding information on the
sire and dam of each bull. Such a trio might have
values of g sire = 10, rsire

2 = 0.97; gdam = 2, rdam
2 = 0.36;

and gi = 15, ri
2 = 0.68. Given h2 = 0.25, l = 0.75/

0.25 = 3, the PA information is gPA  10 2
2 6 , and

rPA
2 0 97 0 36

4 0 333 . . . . Using (15), with a = 5.97,

δ = 0.523, then Z ZPA PA
 = 9.16 which substituted in

(14) gives Z Zi i
 = 5.08.

Substituting these information contents into the co-
efficient matrix or left-hand side of (11) is
9 16 12 6

6 5 08 6

.

.

 
 









 with inverse

0 0558 0 0302

0 0302 0 1066

. .

. .









 .

These values correspond to rPA
2 = 0.5 - 3 × 0.0558 = 0.33

and ri
2 = 1.0 - 3 × 0.1066 = 0.68 the reported rPA

2 and ri
2

confirming the equations used to determine the informa-
tion content. The right-hand side of (11) can then be
reconstructed by multiplying the coefficient matrix by the

vector of EBV as
9 16 12 6

6 5 08 6

6

15

.

.

 
 


















 . The ele-

ment of interest is the right-hand side element corre-
sponding to the individual, obtained as yi

 = -6 × 6 +
11.08 × 15 = 130. The deregressed information for use in

subsequent analysis is obtained as yi
ZiZi

*

. .  130
5 08 25 6

and the corresponding reliability of this information free
of PA effects is ri

2* = 1.0 - 3/(5.08 + 3) = 0.63. The relevant
scaled weight for use with the deregressed information on
this individual assuming c = 0.5 can be found using (10)

as w  
0 75

0 5 0 37 0 63 0 25 2 76.
[ . ( . / . )] . . . This implies that the

deregressed information is 2.76 times more valuable than
a single record on the individual.

Discussion
The relative value of alternative information sources
varies according to c, the parameter that reflects the
ability of the genotypic covariates to predict genetic
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merit. Genomic prediction models that fit well have
small values for c and result in greater relative emphasis
of reliable information than is the case when the
genomic prediction model fits poorly and the residual
variation is dominated by contributions from lack-of-fit.
For example, the mean of 20 halfsib progeny has about
3.6 times the value of the mean of 5 progeny when c is
0.1, and 2.5 times the value when c is 0.8. Deregressed
EBV with reliability 1.0 are 11 times as valuable as
reliability 0.5 when c is 0.1 but only 3 times as valuable
when c is 0.5. These results indicate that collecting
genotypes and phenotypes on training animals with low
to moderate reliability will be of more relative value to
genomic predictions that account for only 50% genetic
variation (i.e. correlation 0.7 between genomic predic-
tion and real merit) than they will for genomic
predictions that account for a high proportion of
variance.

The impact of the assumed c is to influence the relative
value of individuals with reliable information, such as
progeny test results, in comparison to individuals with
information from less reliable sources, such as individual
records. The use of too large a value of c will result in
overemphasis of less accurate information in relation to

more accurate information. The use of too small a value
of c will result in too little emphasis on less accurate
records. The correct value of c will not be known prior to
training analyses but can be estimated from validation
analyses. Training analyses could then be repeated using
the estimated value of c. Alternatively, sensitivity to c
could be assessed by training using a range of values. The
sensitivity to c varies according to the heterogeneity of
information content in the training data.

In practice, information sources of phenotypic data on
training individuals can vary more widely than the
examples derived in this paper. For example, training
individuals might have their own and a mix of half-and
fullsib progeny observed. In such cases, a practical
approach is to first set up the mixed model equations
that would be appropriate to estimate breeding values
on the training individuals and use these to solve for the
deregressed information [2]. This approach could also be
useful in circumstances where training individuals do
not all have the appropriate phenotypes. Consider a
situation where some individuals have carcass measure-
ments while others have correlated observations such as
live animal ultrasound measures. A bivariate analysis of
these two traits could be used to produce a single

Table 1: Relative weightsa for n phenotypic observations on the individual, p observations in twice the halfsib progeny mean with
heritability 0.25 and repeatability 0.6, or deregressed EBV with reliability r2 for varying values of c, the proportion of genetic variation
for which genotypes cannot account

c

Information Source 0.8 0.5 0.25 0.1

Mean of n repeated records n

1 0.79 0.86 0.92 0.97
2 1.00 1.11 1.22 1.30
5 1.19 1.35 1.52 1.65
10 1.27 1.46 1.66 1.81

2 × mean of p half-sib offspring p

5 0.79 0.86 0.92 0.97
10 1.30 1.50 1.71 1.88
20 1.94 2.40 3.00 3.53

Deregressed EBV with reliability r2 r2

0.1 0.31 0.32 0.32 0.33
0.2 0.63 0.67 0.71 0.73
0.3 0.96 1.06 1.16 1.23
0.4 1.30 1.50 1.71 1.88
0.5 1.67 2.00 2.40 2.73
0.6 2.05 2.57 3.27 3.91
0.7 2.44 3.23 4.42 5.68
0.8 2.86 4.00 6.00 8.57
0.9 3.29 4.91 8.31 14.21
1.0 3.75 6.00 12.00 30.00

aWeights are diagonal elements of the inverse of the scaled residual variance-covariance matrix (with the scalar  e
2 factored out before inversion).

Weights are relative to the information content of an individual observation with c = 0.
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deregressed value for the carcass trait for each animal
that accounted for appropriately weighted ultrasound
information.

Conclusions
The arguments put forward in this manuscript support
the use of deregressed information, in agreement with
practices adopted by many researchers [22]. The weight-
ing factors proposed in this paper differ from any
reported in the literature except when the parameter c
= 0 in which cases the weights are effectively the same as
those used by Georges et al. [5] and Spelman et al. [6]. In
practice, the benefit of deregression and the subsequent
weighting of alternative information sources will depend
on the extent to which the number of repeat records,
number of progeny and/or r2 varies among individuals
in the training population.
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