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Abstract

Genomic selection uses genome-wide dense SNP marker genotyping for the prediction of genetic
values, and consists of two steps: (1) estimation of SNP effects, and (2) prediction of genetic value
based on SNP genotypes and estimates of their effects. For the former step, BayesB type of
estimators have been proposed, which assume a priori that many markers have no effects, and some
have an effect coming from a gamma or exponential distribution, i.e. a fat-tailed distribution. Whilst
such estimators have been developed using Monte Carlo Markov chain (MCMC), here we derive a
much faster non-MCMC based estimator by analytically performing the required integrations. The
accuracy of the genome-wide breeding value estimates was 0.01 | (s.e. 0.005) lower than that of the
MCMC based BayesB predictor, which may be because the integrations were performed one-by-
one instead of for all SNPs simultaneously. The bias of the new method was opposite to that of the
MCMC based BayesB, in that the new method underestimates the breeding values of the best
selection candidates, whereas MCMC-BayesB overestimated their breeding values. The new
method was computationally several orders of magnitude faster than MCMC based BayesB, which
will mainly be advantageous in computer simulations of entire breeding schemes, in cross-validation
testing, and practical schemes with frequent re-estimation of breeding values.

Introduction approach to the estimation of the effects of the marker

The recent detection of thousands to millions of SNP
markers and the dramatic improvements in high-through-
put, cost effective genotyping technology have made it
possible to apply marker assisted selection at a genome
wide scale, which is termed genomic selection [1]. These
authors suggested three methods for the estimation of
genetic value from dense SNP marker data, namely GS-
BLUP, BayesA, and BayesB. GS-BLUP applies the BLUP

alleles, which assumes a normal prior distribution for the
marker effects, where the variance of the prior distribution
was assumed equal for all the markers. Since an equal var-
iance for each of the marker effects seems unrealistic, the
BayesA method extended the GS-BLUP method by esti-
mating the variance of every marker separately, and an
inverse chi-square prior was used for the estimation of
these variances. In the BayesB method it was assumed that
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many of the markers will actually have no effect, and the
prior distribution of the variances was a mixture of a dis-
tribution with zero variance and an inverse chi-squared
distribution. In a simulation study where the genetic
model included a finite number of loci with exponentially
distributed effects, BayesB provided more accurate predic-
tion of genetic value than BayesA, which in turn was more
accurate than GS-BLUP.

Although BayesB has the potential for the development of
more faithful genetic models, and so seems the method of
choice for estimating genome wide breeding values (GW-
EBV), its calculation requires the use of computer inten-
sive MCMC techniques. For practical applications and for
computer simulations of genomic selection breeding
schemes, where many selection rounds and replications
are required, it would be advantageous if a much faster
algorithm for the calculation of BayesB GW-EBV would be
available. Thus, our aim here is to present a fast non-
MCMC based algorithm for the calculation of BayesB type
estimates of GW-EBV. By using a mixture of a distribution
with zero effects and an exponential distribution as a prior
for the marker effects, the integration involved in calculat-
ing the expectation of the breeding values given the data
can be solved analytically, which makes non-MCMC esti-
mation of GW-EBV possible.

Methods

The model

We will first develop a model for the estimation of the
effect of one SNP. The model will be extended to m SNPs
in the fourth section of Methods, where m will be
assumed to be much larger than the number of records n.
When estimating one SNP effect, we generally do not need
to use prior information, since the prior will usually be
overwhelmed by the information from the data. However,
since we will be extending the model to the estimation of
many SNP effects, we will use prior information here.
Also, in order to facilitate expansion to multi-SNP models
we assume that the SNP considered is a randomly chosen
SNP with a random effect, instead of a particular SNP with
some particular effect. We will assume that a SNP marker
has two alleles, 0 and 1, with allele 1 the reference allele
having frequency p. For the purpose of estimating gene
effects, the SNP genotypes were standardised to form an n
x 1 vector of covariates, b, defined for animal i as: (1) b;=
-2p/SD, if i has homozygous genotype '0_0"; (2) b; = (1-
2p)/SD if i has heterozygote genotype '0_1"; (3) b; = 2(1-
p)/SD if i has homozygous genotype '1_1'; where SD =
V[2p(1-p)]. Thus, the b; are standardised such that their
mean is 0 and their variance is 1 in a random mating pop-
ulation. If g is the effect of the SNP in the population, and
we assume that it is drawn from a distribution of marker
effects with mean 0, then the variance due to the marker
is Var(b,g) = Var(b;)Var(g) = Var(g). Therefore by model-
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ling the variance of the effect of the SNP, we also model
the variance directly due to the SNP, irrespective of its fre-
quency. This way of modelling the variance due to the
SNP will be discussed in detail in Discussion. It may be
noted however that the standardisation of the variance of
the b, is not essential to our derivations below, i.e. when
considered more appropriate we could choose the b; as -
2p, (1-2p), and 2(1-p), respectively. The model for the
records denoted by the n x 1 vectory is:

y=bg+e (1)

where g is the effect of the SNP; and e is an n x 1 vector of
residuals which are assumed normally distributed with
variance ¢,2. We will ignore the estimation of an overall
mean for now since, even if it were included in the model,
its estimate would not affect the equation for the estima-
tion of g since 1'b = 0, following from the standardisation
of b.

Prior distribution of g
The prior distribution of the SNP effect g, #(g), is assumed
to be a mixture of a distribution with a discrete probability
mass of zero and an exponential distribution reflected
about g = 0 (see [2]):

(2)

1-y) forg=0

y ylexp(—-A | g|) forg#0
n(g)=172

where yis the fraction of the SNPs that are in linkage dis-
equilibrium (LD) with a quantitative trait locus (QTL)
and may consequently have a non-zero effect; and A4 is the
parameter of the exponential distribution. As described in
the Appendix 1 this may be re-expressed as

() = Yy rhexp(=2| g |) + (1~ 7)5(g) where &g) is the
Dirac delta function. Therefore since the variance of the
zero-reflected exponential distribution is 242, for m
markers the total genetic variance is ¢ = 2my42. Covari-
ances between marker effects are expected to be zero,
because any non-zero covariance will depend on the cod-
ing of the marker alleles which is arbitrary, i.e. a positive
covariance can be changed in a negative one by recoding
the marker alleles. The hyper-parameters of the prior dis-
tribution (yand A1) are assumed known here. If one is will-
ing to assume that a fraction y of the markers are in LD
with QTL, the variance per marker in LD with a QTL is o,2/
(my), and an estimate of the A hyper-parameter is V(2 my/

g,2).
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The posterior distribution and the expectation of g | y

For the likelihood of the data y given the genetic effect g a
multi-variate normal distribution is assumed with mean

bg and variance Io,2 from (2), where I is the n x n identity

matrix. Thus, the likelihood function is ¢(y; bg, 152),

where ¢(y; 1 V) is the multi-variate normal density func-
tion with mean g and (co)variance matrix V. In what fol-
lows the dimensionality of the multi-variate ¢(.;.,.) will be
left implicit from the parameters and will include the uni-
variate density. The summary statistic for gis Y = (b'b)-'by
=b'y/n and, consequently, all information on g contained
iny is also contained in Y. The variance of Y is 62 = (b'b)
16,2 = g.2/n since b'b = n. Therefore, the likelihood func-

tion ¢(y; bg, 1) is proportional to the univariate density

#(Y; g 02), as shown in Appendix 2, and so we will use the
univariate version of the likelihood function for simplic-
ity. The posterior distribution of gy now becomes:

#(Yig,0%)r(8) )
00 2 '
2. 8(Yi8.0 “)n(g)dg

p(gly)=

The posterior distribution is not affected by the use of
either ¢(y; bg, 162) or ¢(Y; g, c2) since they are propor-
tional to each other, i.e. ¢(y; bg, 157)/4(Y; g 2) = con-

stant, and this constant is a factor of both the numerator
and the denominator. The expectation of g given y is (e.g.

[2]) as E [g]y] =] gp(gly)dg and thus:

[, 88(Y;g,02)r(g)dg |
12, 8(Y;ig,02)r(g)dg

E[g|yl= (4)

Both the integral in the numerator and that in the denom-
inator are analytically derived in full in Appendix 1. This
results in a closed form for E [g|y], which is presented in
the Appendix 1 in Equation (B3).

Extension to m SNPs

The extension to the estimation of the effects of m SNPs is
obtained by the use of a modification of the Iterative Con-
ditional Mode (ICM) algorithm [3], which we will call the
Iterative Conditional Expectation (ICE) algorithm. The
ICE algorithm uses the expectation/mean instead of the
mode of the posterior, because (1) the mean of g maxim-
ises the correlation between g and g [2]; and (2) due to

the spike at zero the posterior may be bi-modal (see
Results), in which case the mode may be quite far away
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from the mean. The ICE algorithm iteratively calculates
E(g|Y) for each SNP in turn, using the current solutions of
all the other SNPs as if they were true effects, which is
known to only approximately converge to the correct
solution. We will first describe the algorithm and next its
approximate nature. The effects of the SNPs are denoted g;

(i=1, ., m), and in vector notation by g. When estimating
the effect of the ith SNP, the current estimates of all other
SNPs are used to calculate Y;and &2. Iterating from a start-

ing solution, e.g. g = 0, the algorithm performs within

each iteration the following steps:

Forall SNPsi=1, .., m,

Step 1: calculate 'adjusted’ records, y;, which are corrected

for all the other SNPs so y_; =y — Z#ibjgj . Estimate

the sufficient statistics Y; = b’y_; /n, and 6= ¢,.2/n.

Step 2: Equation B3 of Appendix 1 is used to calculate g;
= E [g;]Y;], which is used to update the solution for marker
i.

The iteration is stopped when the changes in the solutions
become small, ie.
(g7 -g"Y(g"-g") /(g7 g") <107®, where subscript

q denotes the gthiteration. In the Step 1, it is computation-

ally more efficient to «calculate Y; directly as

Y; = (biy - z#i(b’ibj)gj)/” . The advantage being that
the elements of the normal equations matrix b’b; may be

stored, which speeds up the calculation of Y;.

As mentioned before, if the only fixed effect is the overall
mean, no correction for fixed effects is needed. If it is

required to estimate fixed effects S with design matrix X,
the «calculation of y; in the Step 1 becomes
y_i=y—-Xp - Z#i b;g; and each iteration also updates
the solutions for the fixed

B= (X’X)_lx'(y - Zjbjgj)~

effects eg. by

The approximate nature of the ICE algorithm is due to y;
and thus Y; not being known, but being estimated. For

ease of notation, this was not denoted by a hat elsewhere
in this paper, but in this paragraph it is necessary to make
the distinction between the true values of y ; =y - ;. bg;
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and Y, and their estimates: y_; and Y,, which are calcu-

lated as indicated above. Estimation errors in y_; and l?i
occur due to the estimation errors of the other SNP effects
8; (j # 1), which is reflected by their Prediction Error Var-

iance, PEV(g;). From a second order Taylor series expan-

sion of E(g;|Y;) around its mean Y;, it follows that:

250 0.1V
Egi 1) = E(g; 1) + 0.5 E8ID vy (s
oY

i

where Var(Y;) is due to prediction error variances and

covariances of the g;. It follows that E(g;|Y;) ~ E(g;| Y;), as
is implicitly assumed in step 2 of the ICE algorithm, if the
second derivative of E(g;|Y;) is small or Var( lA/i ) is small.

The latter is probably only the case if there are few markers

j # i. The first section of Results investigates the non-line-
arity, i.e. second and higher order derivatives, of the
E(g;]Y;) function.

Comparison of non- and MCMC based BayesB

The BayesB algorithm developed here will be denoted by
fBayesB (for 'fast BayesB') and the BayesB algorithm using
MCMC (as described in [1]) will be denoted by MBayesB.
fBayesB and MBayesB were compared in twenty simulated
populations. The simulation of the population and anal-
ysis by MBayesB was conducted by Solberg et al. [4] and
their paper gives a detailed description of the simulation
procedures. In brief, the populations were simulated for
1000 generations at an effective size of 100 in order to cre-
ate mutation drift balance and LD between the markers
and the genes. The genome consisted of 10 chromosomes
of 100 cM with a total of 8010 equidistant marker loci
including markers at each end of the chromosome. The
mutation rate per marker locus per meiosis was high
(2.5*103) to ensure that virtually all the loci were segre-
gating. If more than one mutation occurred at a marker
locus, the mutation that resulted in the highest Minor
Allele Frequency (MAF) was considered as ‘visible',
whereas the others were considered 'unvisible' and were
thus ignored. With these parameters, the visibility proce-
dure turned 99% of markers into biallelic markers, even if
several mutations had occurred, with the remaining 1%
being monoallelic. There were 1000 equidistant putative
QTL positions, which were chosen such that a QTL posi-
tion was always in the middle between two marker loci.
Whether or not a putative QTL position had an effect on
the trait depended on the existence of a mutation during
the simulated generations, which occurred with a muta-
tion rate of 2.5*10-5. The effects of QTL alleles were sam-
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pled from a gamma distribution with scale parameter 1.4
and shape parameter 4.2, and were considered with equal
probabilities of being positive or negative.

The scale parameter of the gamma distribution was cho-
sen such that the expected genetic variance was 1 (as in
[1]). In generation 1001 and 1002 the population size
was increased to 1000, and the animals were genotyped
for the 8010 markers. In generation 1001, the animals
also had phenotypic records, i.e. the phenotype of animal
i was:

¥i = Zi(@iip) + dijom)) + €

where a;;(,,

that animal i inherited at QTL locus j; e~N(0, o), where

yis the effect of the paternal (m, maternal) allele

o} was set equal to the realised genetic variance in the

replicate, such that the heritability was 0.5 in each repli-
cate. Marker effects were estimated using the phenotypes
and genotypes obtained from generation 1001. The total
genetic values for the animals of generation 1002 were
predicted (GW-EBV) from their marker genotypes and the
estimates of the marker effects. The accuracy of these esti-
mates was calculated as the correlation between the GW-
EBV and the true breeding value, which is known in this
simulation study. The coefficient of the regression of the
true genetic value on the GW-EBV was used as a measure
of the bias of the EBV, and a regression coefficient of 1
implies no bias.

Results

The non-linear regression curve

In Figure 1, E [g|Y] is plotted against the value of Y with o2
= 1; since Y is the sufficient statistic for g given the data 'y,
E [g|y] = E |g|Y]. Figure 1 shows also the regression curve
when the integrals in Equation (4) were numerically eval-
uated, as was done by Goddard [2]. The empirical curve of
Goddard has similar characteristics, which is relatively flat
atY = 0, but approaches a derivative of 1 for extreme val-
ues of Y. However as a result of the closed expression in
Appendix 1 (B3) it is possible to explore the full solution
space and Figure 2 shows some examples from this space.
The examples demonstrate several features. Firstly E [g|Y]
is an odd function (in a mathematical sense) satisfying E
[g| -Y] = -E [g]Y]. Secondly, d E [g|Y]/dY is non-zero at Y =
0 but decreases towards 0 as ytends to 0. Furthermore d E
[g]Y]/dY is not necessarily monotonic, for example see y =
0.05 in Figure 2. In the example with y = 0.05 it is clear
that d E |g]Y]/dY exceeds 1 for Y ~ 3.5 i.e. an increment in
Y results in a greater increment in E [g|Y]. Heuristically
this occurs because for small y there are only few non zero
marker effects, but those present are large; therefore E
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The expectation of the genetic value given the summary statistic of the data Y, E(g|Y), as a function of Y. The
parameter of the exponential distribution is 1 = |, 0> = |, and the probability of a marker having a true effect is y = 0.05; E(g|Y)
calculated by numerical integration is represented by black dots and the analytical solution is shown as white dots.
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> - — 7
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LLI
Y (in s.d.)
Figure 2

The expectation of the genetic value given the summary statistic of the data Y, E(g|Y) as a function of Y. The
parameter of the exponential distribution is 1 = |, 0 = |, and the probability of a marker having a true effect is = 0.05 (bold
curve), 0.5 (dotted curve), and 1.0 (regular line).

Page 5 of 10

(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:2

[g]Y] is close to 0, since Y is expected to have occurred by
chance, until Y becomes large and statistically unusual in
magnitude, but once considered unusual, E [g|Y] is large.
Asymptotically, for Y of large magnitude d E [g|Y]/dY
tends to 1. The asymptotic behaviour of E(g|Y) is:

2
Y-1c“ forY — 4+
Eg|Y]=
forY — —oo.

Y + Ac?
This is nominally independent of y, but for a given o2 the
value of 4 will increase as y increases. Assuming that all
the genetic variance can be explained by markers, and the
trait has a phenotypic variance of 1 and heritability h2,

2o?=1-h*)n""y/(2my /h?) . In summary, the effect is

that for small Y values the estimates of g are regressed back
substantially, whereas the regression back for large values
of Y is diminishing and small.

http://www.gsejournal.org/content/41/1/2

The non-linearity of E [g|Y] is especially pronounced for
small 7 and the second derivative seems positive (nega-
tive) for positive (negative) values of Y that are approxi-
mately between -4 <Y < 4. Since most Y values (expressed
in o units) will be between these boundaries, the regres-
sion E [g|Y] is quite non-linear. For multiple SNPs, Equa-
tion (5) suggests that the estimates of g will be
conservative in the sense that they will show a bias
towards zero. This bias will be increased for smaller y, i.e.
for a smaller number of QTL over number of markers

ratio.

Figure 3 depicts the prior, likelihood and posterior distri-
bution of g, in a situation where the posterior is bimodal.
For smaller values of Y, the likelihood curve moves to the
left and the two peaks of the posterior merge into one. For
larger values of Y, the likelihood moves to the right, hence
its value at 0 reduces, and the peak of the posterior at zero
disappears. In the latter case, the posterior becomes
approximately a symmetric distribution, and the use of

[, .
£ 4
A=
0 »»»--Je
0.1 0.0
Figure 3

The probability density function (PDF) of the prior (...), likelihood (_ _

_), and posterior (___) of g. The parameter

from the exponential distribution 4 = 1.67, y= 0.1, and Y = 0.2 (s.d. units); the spike of the prior distribution at zero is
depicted by an exponential distribution, that is reflected around zero, with a very large 1 of 200.
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Table I: The accuracy of MBayesB, fBayesB and BLUP, defined
by the correlation between true and estimated breeding values
in generation 1002.

Method Accuracy + se Regression + se
fBayesB 0.849 £ 0.011 1.145 + 0.025
MBayesB 0.860 £ 0.010 0.923 £ 0.011
BLUP 0.694 + 0.006 0.990 + 0.009

Together with the regression of true on estimated breeding value.
MBayesB and fBayesB incorporate BayesB assumption calculated using
MCMC or by the methods described here, and BLUP denotes
estimation assuming equal variances due to each of the markers

the mode (ICM) instead of the mean (ICE) would not
make much difference.

The accuracy and bias of GW-EBYV using BLUP, fBayesB
and MBayesB

MBayesB is slightly more accurate than fBayesB (Table 1).
The difference in accuracy is 0.011 with s.e. of difference
of 0.005, which is statistically significant. For comparison,
the accuracy of BLUP GW-EBV is also shown, calculated
with a prior that each marker contributes an equal
amount of variance, namely 1/m, i.e. the infinitesimal
model is assumed to hold, at least approximately. The
accuracy of the BLUP GW-EBV is considerably lower than
that of MBayesB and fBayesB, which is probably because
the genetic model underlying the simulations is quite far
from the infinitesimal model.

http://www.gsejournal.org/content/41/1/2

Both MBayesB and fBayesB yielded biased EBV, but, inter-
estingly, the biases are opposite in direction. MBayesB
yields EBV that are too variable, so the EBV require to be
shrunk in order to predict the TBV without bias, hence the
regression of the TBV on the EBV is <1. In contrast,
fBayesB yields EBV with too little variance, so the EBV
require to be scaled up in order to predict the TBV without
bias, i.e. the regression is >1. This conservative behaviour

of g, i.e. differences between the estimates are smaller

than the real life differences, is expected based on the non-
linearity observed in Figure 2 and Equation (5) (see first
section of Results). Especially, the bias of the fBayesB is
considerable, and should be corrected for by rescaling the
EBV when used in a breeding scheme where EBVs based
on different amounts of information are to be compared.

In order to investigate any systematic deviations of
fBayesB-EBV from the MBayesB-EBV, which is considered
the golden standard, Figure 4 plots both types of EBV
against each other. The regression of the EBV from both
types of non-linear regression methods against each other
seems pretty linear, which indicates that both methods
seem to non-linearly regress the phenotypic data in a very
similar way.

Computer time

The difference in computer time is large: whereas fBayesB
takes 2 to 5 minutes MBayesB takes 47 h to compute. No
attempt was made to implement parallel computing with

fBayesB-EBV

MBayesB-EBV

Figure 4

Scatter plot of fBayesB-EBV against MBayesB-EBV and their linear regression line.
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MBayesB, although it is readily amenable to parallel pro-
cedures through running multiple shorter MCMC chains
(each chain should be longer than the burn-in period),
which reduces the required wall-time for the calculations.
The impact of parallel computing procedures of fBayesB is
less clear, but there also appears to be no need for this.

Discussion

A fast, non-MCMC based algorithm, called Iterative Con-
ditional Expectation (ICE), was derived for the calculation
of GW-EBV using dense SNP genotype and phenotypic
data. The speed of improvement is due to the analytical
integration of the integrals involved in the calculation of
E [g|Y]. The Bayesian estimation model used here has very
similar characteristics to BayesB as described by [1] and
denoted MBayesB here: the prior distribution is a mixture
of a heavy-tailed distribution (fBayesB: exponential distri-
bution; MBayesB: a normal distribution whose variance is
sampled from an inverse chi-squared) and a distribution
with zero effects. The latter mixture distribution is also
called a 'spike and slab' mixture [5]. The QTL effects had a
Gamma distribution, and thus differed from both that of
fBayesB and MBayesB. It may be noted that the prior dis-
tribution of fBayesB and MBayesB does not apply to the
QTL effects but to the marker effects, for which the true
prior distribution will be hard to derive. Although we can-
not rule out that the slightly better accuracy of MBayesB
compared to fBayesB (Table 1) is due to the prior distribu-
tion of MBayesB being better than that of fBayesB, the
non-linear regressions of MBayesB and fBayesB seemed
very similar since they resulted in a linear regression of the
fBayesB-EBV on the MBayesB-EBV (Figure 4). The differ-
ence in accuracy seems to be due to that the ICE algorithm
ignores higher order derivatives of E(g|Y) function to Y
(Eqgn. 5). Relaxing this assumption requires (1) taking sec-
ond order derivatives of the E(g|Y) function, (2) calcula-

tion of prediction error variances of ijgj, and more

research is needed to perform these calculations computa-
tionally efficiently.

The justification for the 'spike and slab' prior distribution
is that many of the SNPs will not be in LD with a QTL and
thus have no effect, whereas the SNPs that are in LD with
a QTL have a distribution of effects that is similar to that
of the QTL, albeit smaller in magnitude due to the need
for several markers to predict the effect of the true QTL
genotypes. The true distribution of QTL is often reported
to be exponential or gamma [6]. Hayes and Goddard [6]
found a shape parameter for the gamma distribution of
0.4, i.e. a leptokurtic shape similar to that of the exponen-
tial distribution. Where the marker is not in perfect LD

http://www.gsejournal.org/content/41/1/2

with the gene, it will pick up only a fraction of the gene
effect and the impact of this on the distribution of marker
effects is included within the assumptions concerning
their prior distribution.

The non-linear regression curve, resulting from the choice
of the prior distribution, is rather flat for values of Y close
to 0, but approaches a ratio of E [g|Y]/Y = 1 for Y of large
magnitude, so E [g|Y] = Y albeit for very large, and hence
rare, deviations. Thus large values of Y are assumed to rep-
resent true marker effects, whereas small values are
regressed back substantially, i.e. are unlikely to represent a
true effect. In contrast, if Best Linear Unbiased Prediction
(BLUP) of marker effects is used, i.e. a normal prior distri-
bution of the marker effects, the regression does not
depend on Y and is a constant equal to ¢2/(c? + c,,2), i.e.
E(g|Y) =Y* ¢6?/(02 + 0,,2), where o, 2 is the variance of the
marker effects, which will be ¢,2/m. This distinction is due
to the use of the normal prior instead of the exponential
and, as a consequence, the heavier tails giving credence to
large marker effects. Nevertheless the high value of E
[g]Y]/Y when using the exponential prior may not be a
desirable effect, if outlier data points are encountered.

The variance due to a marker is Var("Marker") =
Var(b;)Var(g). Here we standardised the variance of the
genotypes to Var(b;) = 1, i.e. the prior variance assumed
for the marker effects, g, applies directly for the variance
due to the marker, and thus does not depend on marker
frequency. We prefer this parameterisation, assuming that
the variance of the marker effects is frequency dependent,
because (1) QTL with large effects are expected to be at
rare frequencies, which implies that the variance of the
QTL is roughly constant (at least considerably more con-
stant than when QTL effects were not frequency depend-
ent); (2) if we assume that the QTL variance needs to be
above a certain threshold before the markers pick up its
effect, these QTL will have a much more constant variance
than randomly picked QTL. The algorithm is equally
capable of handling the coding of b;as 0, 1, and 2, (or
after subtracting the mean -2p, (1-2p), and 2(1-p)) for
the genotypes mm, Mm, and MM, respectively. The accu-
racies of the GW-EBV were virtually the same as those in
Table 1 when the latter parameterisation of the b; was used
(result not shown).

The computational advantage of our fast algorithm for the
BayesB approach to GW-EBV will not outweigh the
reduced accuracy observed, if confirmed for typical trait
architecture, when used in practical breeding schemes and
the computational time and effort can be afforded. If, in
practice, breeding schemes wish to select upon GW-EBV
that require frequent updating, then a more appropriate
comparison is between frequently updated fBayesB esti-
mates of marker effects and the use of 'old' MCMC based
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estimates of marker effects, where the GW-EBV of animals
are calculated without updating the estimates of marker
effects, because of computational constraints. In the latter
case there will be a loss of accuracy. It will depend on the
amount of new information coming into the breeding
value evaluation system, which of these alternatives
should be favoured. In simulations of breeding schemes
and in cross-validation testing of GW-EBV, the large
number of EBV evaluations required may make our fast
algorithm the only means to implement BayesB type
genome-wide breeding value estimation.
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Appendix |

Analytical derivation of E [g|Y]

Here we will analytically derive the integrals in (4) in the
main text. The prior 7(g) as described in the text is:

n(g)= Vo vrexp(-2|g)+(1-7)5(g) (B

where o(g) is the Dirac delta function http://math
world.wolfram.com/DeltaFunction.html. The Delta func-

b
tion has the property that J f(S(y)dy = f(0) ifa<0<b

b
and 0 otherwise, consequently j f()6(y —c)dy = f(c) if

a < ¢ < b and 0 otherwise. The numerator of (4) involves
an integration from -o to +oo, which for the first term in
(B1) is here split into:

(Y- g)

_[ gyzgmexp( u G) —lgdg+J T \/—exp(— +28)dg
(B2)
The first term in (B2) involves

exp(— ¥ (Y - g)?/o? - 1g) and the exponent can be re-

expressed as:
_%(Y—g)z/o.z _lg:_%(g_(y_lGZ))2/0_2 +%l262 Y

The term exp(% 2o?

constant in the integration, whilst the remaining part,

— 1Y) does not involve g and is a

http://www.gsejournal.org/content/41/1/2

exp(—%(g —(Y =210%))?/o?), is proportional to a nor-

mal density with mean (Y - A62) and variance 2. Now
collecting terms, the first term of (B2) becomes:

Yyep(1g 20 ) exp(-2Y) | g(oEm) " expl- 1 (- (V = 20%) o

The integrand may be recognised as being proportional to
the mean of a truncated normal distribution, where the
truncation point is 0, and truncated normal distributed
has mean (Y - A02) and variance 2. The constant of pro-
portionality is the further normalising required for the
true truncated density, which is [1 - ®(0; (Y - 162), &2)],
where O(x; 4, o?) is the cumulative normal distribution
function with mean x and variance o2. Calculating the
mean of a truncated normal distribution belongs to the
standard tools used in animal breeding (involving the
standardisation of the distribution and calculating the
intensity of selection; e.g. [7]). For brevity, we define here
the function @ (x; & 02), which represents the mean of an
upper truncated normal distribution with mean g and
variance o? truncated at x. After accounting for the scaling
the first term of (B2) is seen to be:

%y/l exp(1, 4% %) exp(=AY)[1 - ®(0; (Y - 25%),67)|0y(0; (Y - A5?),0%)
Using a very similar derivation, the second term of (B2)
becomes:

1 yexp(154°6) exp(AY)D(0; (Y + A62),67)0 (0 (Y + A5 ?),07)

where ©,(x; 1, 02) represents the mean of a lower trun-

cated normal distribution with mean x and variance o?
truncated at x. From (B1) the final term of the numerator
of equation (4) is

oo _
[ 8 -7)(ov2m) " exp(- 15 (Y - 8)° [ 07)5(8)dg
which enumerates to 0 following the rules of the Dirac
delta-function.

The integral in the denominator of equation (4), follows
similar arguments to the numerator but there is no g in
the integrand so that the integrals now calculate the prob-
ability masses associated with the truncated distributions
of their means. The term with the Dirac delta function
integrates to:

[0 nev2n) e 1, - 9 fo (g =(1- 1) (VIR expl=1,¥ o)

After carrying out these calculations and some simplifica-
tion, and denoting Y"=Y - Ac?and Y* =Y + A¢? the equa-
tion (4) in the main text becomes:
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exp(—=2Y)(1-D(0;Y ~,52))0y (0;Y ~,0 2)+exp(AY)D(0;Y T .6 2))0 (0,y .0 2)
exp(=AY)(1-D(0Y "0 ) +exp(AV)D(0:Y T ,02))+2(1-7) (72) exp(- 1226 2)p(V;0,02)

(B3)

Appendix 2

The likelihood of multivariate data can be described by a
univariate likelihood function involving the sufficient
statistics of the data

The multivariate likelihood of the data, y, as described by
model (1) is:

$u(y:gb,107) o< exp(—0.5 w)
Oe

(A1)
where o« means equal up to a proportionality constant; g

= the effect of the SNP, and b is a nx1 vector of covariates
obtained from the SNP genotyping. We re-express the

term (y - gb)'(y - gb)) as:
Yy —2gb’y + g’b'b

2 ny—1y.
-2g(b’b)""bYy
_87-28(bb) by oo

(b'b) ! (A2)
_(g-(b) 'by)?  ybby
() (b 7

If we use the likelihood (A1) for the estimation of the SNP
effect g, than the last two terms in Equation (A2) are con-
stant and thus do not affect the maximisation of the like-
lihood. Hence, for the estimation of g (Al) could be
expressed as a single-variate density:

a2
$(g;Y,0%) o exp(—0~5(gi?)
(2

where Y = (b'b)-'b'y and ¢? = (b'b)-1 ¢ are the sufficient

statistics of the data.
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